cpuset.c 69.5 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
Linus Torvalds's avatar
Linus Torvalds committed
8
9
10
11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
Linus Torvalds's avatar
Linus Torvalds committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/config.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
34
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
35
36
37
38
39
40
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
41
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
55
#include <linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
56

57
#define CPUSET_SUPER_MAGIC		0x27e0eb
Linus Torvalds's avatar
Linus Torvalds committed
58

59
60
61
62
63
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
64
int number_of_cpusets __read_mostly;
65

66
67
68
69
70
71
72
73
74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
75
76
77
78
79
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

80
81
82
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
99
100
101
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Linus Torvalds's avatar
Linus Torvalds committed
102
103
104
105
106
107
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
108
	CS_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
109
	CS_REMOVED,
110
111
112
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
113
114
115
116
117
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
118
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
119
120
121
122
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
123
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
124
125
126
127
}

static inline int is_removed(const struct cpuset *cs)
{
128
	return test_bit(CS_REMOVED, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
129
130
131
132
}

static inline int notify_on_release(const struct cpuset *cs)
{
133
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
134
135
}

136
137
static inline int is_memory_migrate(const struct cpuset *cs)
{
138
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
139
140
}

141
142
143
144
145
146
147
148
149
150
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
151
/*
152
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
153
154
155
156
157
158
159
160
161
162
163
164
165
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
166
167
168
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
169
 */
170
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
171
172
173
174
175
176
177
178
179
180
181

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
182
static struct super_block *cpuset_sb;
Linus Torvalds's avatar
Linus Torvalds committed
183
184

/*
185
186
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
187
188
189
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
190
191
192
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
193
194
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
195
 * also allocate memory while just holding manage_mutex.  While it is
196
 * performing these checks, various callback routines can briefly
197
198
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
199
200
 *
 * Calls to the kernel memory allocator can not be made while holding
201
 * callback_mutex, as that would risk double tripping on callback_mutex
202
203
204
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
205
 * If a task is only holding callback_mutex, then it has read-only
206
207
208
209
210
211
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
212
 * So in general, code holding manage_mutex or callback_mutex can't rely
213
 * on the count field not changing.  However, if the count goes to
214
 * zero, then only attach_task(), which holds both mutexes, can
215
216
217
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
218
 * So code holding manage_mutex or callback_mutex can safely assume that
219
 * if the count is zero, it will stay zero.  Similarly, if a task
220
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
221
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
222
 * both of those mutexes.
223
224
 *
 * The cpuset_common_file_write handler for operations that modify
225
 * the cpuset hierarchy holds manage_mutex across the entire operation,
226
227
 * single threading all such cpuset modifications across the system.
 *
228
 * The cpuset_common_file_read() handlers only hold callback_mutex across
229
230
231
232
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
233
 * (usually) take either mutex.  These are the two most performance
234
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
235
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
236
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
237
238
239
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
240
241
242
243
244
245
246
247
248
249
250
251
252
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cpuset
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
253
 * so using both mutexes, however there are several performance
254
 * critical places that need to reference task->cpuset without the
255
 * expense of grabbing a system global mutex.  Therefore except as
256
257
258
259
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
260
261
262
263
264
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
Linus Torvalds's avatar
Linus Torvalds committed
265
266
 */

267
268
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
269

Linus Torvalds's avatar
Linus Torvalds committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blksize = PAGE_CACHE_SIZE;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
317
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds's avatar
Linus Torvalds committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
Eric Dumazet's avatar
Eric Dumazet committed
342
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
343
344
345
346
347
348
349
350
351
352
353
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
Eric Dumazet's avatar
Eric Dumazet committed
354
	list_del_init(&dentry->d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
					int flags, const char *unused_dev_name,
					void *data)
{
	return get_sb_single(fs_type, flags, data, cpuset_fill_super);
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
 *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_dentry->d_fsdata
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
443
 * Call with manage_mutex held.  Writes path of cpuset into buf.
Linus Torvalds's avatar
Linus Torvalds committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
487
488
489
490
491
492
493
494
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
495
 * When we had only one cpuset mutex, we had to call this
496
497
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
498
499
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
Linus Torvalds's avatar
Linus Torvalds committed
500
501
 */

502
static void cpuset_release_agent(const char *pathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
503
504
505
506
{
	char *argv[3], *envp[3];
	int i;

507
508
509
	if (!pathbuf)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
510
511
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
512
	argv[i++] = (char *)pathbuf;
Linus Torvalds's avatar
Linus Torvalds committed
513
514
515
516
517
518
519
520
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

521
522
	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
523
524
525
526
527
528
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
529
530
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
531
532
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
533
534
535
536
537
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
538
539
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
540
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
Linus Torvalds's avatar
Linus Torvalds committed
541
542
 */

543
static void check_for_release(struct cpuset *cs, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
544
545
546
547
548
549
550
551
552
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
553
554
555
			kfree(buf);
		else
			*ppathbuf = buf;
Linus Torvalds's avatar
Linus Torvalds committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
570
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
594
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
595
596
597
598
599
600
601
602
603
604
605
606
607
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

608
609
610
611
612
613
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
614
 *
615
616
617
618
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
619
620
 * Call without callback_mutex or task_lock() held.  May be called
 * with or without manage_mutex held.  Doesn't need task_lock to guard
621
622
623
 * against another task changing a non-NULL cpuset pointer to NULL,
 * as that is only done by a task on itself, and if the current task
 * is here, it is not simultaneously in the exit code NULL'ing its
624
 * cpuset pointer.  This routine also might acquire callback_mutex and
625
 * current->mm->mmap_sem during call.
626
 *
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
645
646
647
648
649
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
650
651
 */

652
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
653
{
654
	int my_cpusets_mem_gen;
655
	struct task_struct *tsk = current;
656
	struct cpuset *cs;
657

658
659
660
661
662
663
664
665
666
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
667

668
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
669
		mutex_lock(&callback_mutex);
670
671
672
673
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
674
675
676
677
678
679
680
681
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
682
		task_unlock(tsk);
683
		mutex_unlock(&callback_mutex);
684
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
685
686
687
688
689
690
691
692
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
693
 * are only set if the other's are set.  Call holding manage_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
711
 * manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
	if ((par = cur->parent) == NULL)
		return 0;

	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

757
758
759
760
761
762
763
764
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
765
 * Call with manage_mutex held.  May nest a call to the
766
767
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
 */
768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
	if (is_removed(cur) || !is_cpu_exclusive(cur)) {
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

810
/*
811
 * Call with manage_mutex held.  May take callback_mutex during call.
812
813
 */

Linus Torvalds's avatar
Linus Torvalds committed
814
815
816
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
817
	int retval, cpus_unchanged;
Linus Torvalds's avatar
Linus Torvalds committed
818
819
820
821
822
823
824
825
826

	trialcs = *cs;
	retval = cpulist_parse(buf, trialcs.cpus_allowed);
	if (retval < 0)
		return retval;
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	if (cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
827
828
829
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
830
	mutex_lock(&callback_mutex);
831
	cs->cpus_allowed = trialcs.cpus_allowed;
832
	mutex_unlock(&callback_mutex);
833
834
835
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
836
837
}

838
/*
839
840
841
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
842
843
844
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
845
 *
846
 * Call with manage_mutex held.  May take callback_mutex during call.
847
848
849
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
850
851
 */

Linus Torvalds's avatar
Linus Torvalds committed
852
853
854
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
855
	nodemask_t oldmem;
856
857
858
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
859
	int migrate;
860
	int fudge;
Linus Torvalds's avatar
Linus Torvalds committed
861
862
863
864
865
	int retval;

	trialcs = *cs;
	retval = nodelist_parse(buf, trialcs.mems_allowed);
	if (retval < 0)
866
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
867
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
868
869
870
871
872
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
873
874
875
	if (nodes_empty(trialcs.mems_allowed)) {
		retval = -ENOSPC;
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
876
	}
877
878
879
880
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

881
	mutex_lock(&callback_mutex);
882
	cs->mems_allowed = trialcs.mems_allowed;
883
	cs->mems_generation = cpuset_mems_generation++;
884
	mutex_unlock(&callback_mutex);
885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		write_lock_irq(&tasklist_lock);		/* block fork */
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
		write_unlock_irq(&tasklist_lock);	/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
	write_unlock_irq(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
940
	 * cpuset manage_mutex, we know that no other rebind effort will
941
942
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
943
	 * is idempotent.  Also migrate pages in each mm to new nodes.
944
	 */
945
	migrate = is_memory_migrate(cs);
946
947
948
949
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
950
951
952
953
		if (migrate) {
			do_migrate_pages(mm, &oldmem, &cs->mems_allowed,
							MPOL_MF_MOVE_ALL);
		}
954
955
956
957
958
959
960
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
961
done:
Linus Torvalds's avatar
Linus Torvalds committed
962
963
964
	return retval;
}

965
/*
966
 * Call with manage_mutex held.
967
968
969
970
971
972
973
974
975
976
977
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
978
979
980
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
981
982
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
983
984
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
985
 *
986
 * Call with manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
987
988
989
990
991
992
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
993
	int err, cpu_exclusive_changed;
Linus Torvalds's avatar
Linus Torvalds committed
994
995
996
997
998
999
1000
1001
1002
1003

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1004
1005
1006
1007
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1008
	mutex_lock(&callback_mutex);
1009
1010
1011
1012
	if (turning_on)
		set_bit(bit, &cs->flags);
	else
		clear_bit(bit, &cs->flags);
1013
	mutex_unlock(&callback_mutex);
1014
1015
1016
1017

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1018
1019
}

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/*
 * Frequency meter - How fast is some event occuring?
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1118
1119
1120
1121
1122
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1123
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1124
1125
1126
 * the task 'pid' during call.
 */

1127
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
1128
1129
1130
1131
1132
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1133
	nodemask_t from, to;
1134
	struct mm_struct *mm;
Linus Torvalds's avatar
Linus Torvalds committed
1135

1136
	if (sscanf(pidbuf, "%d", &pid) != 1)
Linus Torvalds's avatar
Linus Torvalds committed
1137
1138
1139
1140
1141
1142
1143
1144
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1145
		if (!tsk || tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1163
	mutex_lock(&callback_mutex);
1164

Linus Torvalds's avatar
Linus Torvalds committed
1165
1166
1167
1168
	task_lock(tsk);
	oldcs = tsk->cpuset;
	if (!oldcs) {
		task_unlock(tsk);
1169
		mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1170
1171
1172
1173
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1174
	rcu_assign_pointer(tsk->cpuset, cs);
Linus Torvalds's avatar
Linus Torvalds committed
1175
1176
1177
1178
1179
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1180
1181
1182
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1183
	mutex_unlock(&callback_mutex);
1184
1185
1186
1187
1188
1189
1190

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
		mmput(mm);
	}

1191
1192
	if (is_memory_migrate(cs))
		do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
Linus Torvalds's avatar
Linus Torvalds committed
1193
	put_task_struct(tsk);
1194
	synchronize_rcu();
Linus Torvalds's avatar
Linus Torvalds committed
1195
	if (atomic_dec_and_test(&oldcs->count))
1196
		check_for_release(oldcs, ppathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1197
1198
1199
1200
1201
1202
1203
1204
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1205
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1206
1207
1208
1209
1210
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1211
1212
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1213
1214
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
	FILE_TASKLIST,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_dentry);
	cpuset_filetype_t type = cft->private;
	char *buffer;
1225
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * NR_CPUS)
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1242
	mutex_lock(&manage_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1265
1266
1267
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1268
1269
1270
1271
1272
1273
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1274
1275
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1276
		cs->mems_generation = cpuset_mems_generation++;
1277
1278
1279
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1280
		cs->mems_generation = cpuset_mems_generation++;
1281
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1282
	case FILE_TASKLIST:
1283
		retval = attach_task(cs, buffer, &pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1293
	mutex_unlock(&manage_mutex);
1294
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1333
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1334
	mask = cs->cpus_allowed;
1335
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1336
1337
1338
1339
1340
1341
1342
1343

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1344
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1345
	mask = cs->mems_allowed;
1346
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
1382
1383
1384
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1385
1386
1387
1388
1389
1390
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1391
1392
1393
1394
1395
1396
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1397
1398
1399
1400
1401
1402
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

Al Viro's avatar
Al Viro committed
1403
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds's avatar
Linus Torvalds committed
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

Linus Torvalds's avatar
Linus Torvalds committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
static struct file_operations cpuset_file_operations = {
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

static struct inode_operations cpuset_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
Paul Jackson's avatar
Paul Jackson committed
1481
	.rename = cpuset_rename,
Linus Torvalds's avatar
Linus Torvalds committed
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
1515
 *	cs:	the cpuset we create the directory for.
Linus Torvalds's avatar
Linus Torvalds committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
		parent->d_inode->i_nlink++;
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

1548
	mutex_lock(&dir->d_inode->i_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1549
1550
1551
1552
1553
1554
1555
1556
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
1557
	mutex_unlock(&dir->d_inode->i_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1585
1586
1587
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
Linus Torvalds's avatar
Linus Torvalds committed
1588
 */
1589
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
Linus Torvalds's avatar
Linus Torvalds committed
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			pidarray[n++] = p->pid;
			if (unlikely(n == npids))
				goto array_full;
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

1629
1630
1631
1632
/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
1633
 * Does not require any specific cpuset mutexes, and does not take any.
1634
 */
Linus Torvalds's avatar
Linus Torvalds committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cpuset gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cpuset users didn't
	 * show up until sometime later on.
	 */
	npids = atomic_read(&cs->count);
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		goto err1;

	npids = pid_array_load(pidarray, npids, cs);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

	/* Call pid_array_to_buf() twice, first just to get bufsz */
	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
	if (!ctr->buf)
		goto err2;
	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

	kfree(pidarray);
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	if (*ppos + nbytes > ctr->bufsz)
		nbytes = ctr->bufsz - *ppos;
	if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
		return -EFAULT;
	*ppos += nbytes;
	return nbytes;
}

static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_tasks = {
	.name = "tasks",
	.open = cpuset_tasks_open,
	.read = cpuset_tasks_read,
	.release = cpuset_tasks_release,
	.private = FILE_TASKLIST,
};

static struct cftype cft_cpus = {
	.name = "cpus",
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_notify_on_release = {
	.name = "notify_on_release",
	.private = FILE_NOTIFY_ON_RELEASE,
};

1745
1746
1747
1748
1749
static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
	.private = FILE_MEMORY_MIGRATE,
};

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
	.private = FILE_MEMORY_PRESSURE,
};

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
	.private = FILE_SPREAD_SLAB,
};

Linus Torvalds's avatar
Linus Torvalds committed
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
static int cpuset_populate_dir(struct dentry *cs_dentry)
{
	int err;

	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
		return err;
1784
1785
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
		return err;
1786
1787
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
		return err;