cpuset.c 75.8 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
Linus Torvalds's avatar
Linus Torvalds committed
8
9
10
11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
Linus Torvalds's avatar
Linus Torvalds committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
33
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
34
35
36
37
38
39
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
40
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
41
42
#include <linux/sched.h>
#include <linux/seq_file.h>
43
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
44
45
46
47
48
49
50
51
52
53
54
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
55
#include <linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
56

57
#define CPUSET_SUPER_MAGIC		0x27e0eb
Linus Torvalds's avatar
Linus Torvalds committed
58

59
60
61
62
63
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
64
int number_of_cpusets __read_mostly;
65

66
67
68
69
70
71
72
73
74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
75
76
77
78
79
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

80
81
82
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
99
100
101
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Linus Torvalds's avatar
Linus Torvalds committed
102
103
104
105
106
107
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
108
	CS_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
109
	CS_REMOVED,
110
111
112
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
113
114
115
116
117
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
118
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
119
120
121
122
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
123
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
124
125
126
127
}

static inline int is_removed(const struct cpuset *cs)
{
128
	return test_bit(CS_REMOVED, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
129
130
131
132
}

static inline int notify_on_release(const struct cpuset *cs)
{
133
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
134
135
}

136
137
static inline int is_memory_migrate(const struct cpuset *cs)
{
138
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
139
140
}

141
142
143
144
145
146
147
148
149
150
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
151
/*
152
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
153
154
155
156
157
158
159
160
161
162
163
164
165
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
166
167
168
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
169
 */
170
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
171
172
173
174
175
176
177
178
179
180
181

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
182
static struct super_block *cpuset_sb;
Linus Torvalds's avatar
Linus Torvalds committed
183
184

/*
185
186
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
187
188
189
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
190
191
192
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
193
194
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
195
 * also allocate memory while just holding manage_mutex.  While it is
196
 * performing these checks, various callback routines can briefly
197
198
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
199
200
 *
 * Calls to the kernel memory allocator can not be made while holding
201
 * callback_mutex, as that would risk double tripping on callback_mutex
202
203
204
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
205
 * If a task is only holding callback_mutex, then it has read-only
206
207
208
209
210
211
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
212
 * So in general, code holding manage_mutex or callback_mutex can't rely
213
 * on the count field not changing.  However, if the count goes to
214
 * zero, then only attach_task(), which holds both mutexes, can
215
216
217
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
218
 * So code holding manage_mutex or callback_mutex can safely assume that
219
 * if the count is zero, it will stay zero.  Similarly, if a task
220
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
221
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
222
 * both of those mutexes.
223
224
 *
 * The cpuset_common_file_write handler for operations that modify
225
 * the cpuset hierarchy holds manage_mutex across the entire operation,
226
227
 * single threading all such cpuset modifications across the system.
 *
228
 * The cpuset_common_file_read() handlers only hold callback_mutex across
229
230
231
232
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
233
 * (usually) take either mutex.  These are the two most performance
234
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
235
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
236
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
237
238
239
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
240
241
242
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
243
 * least one task in the system (init), therefore, top_cpuset
244
245
246
247
248
249
250
251
252
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
253
 * so using both mutexes, however there are several performance
254
 * critical places that need to reference task->cpuset without the
255
 * expense of grabbing a system global mutex.  Therefore except as
256
257
258
259
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
260
261
262
263
264
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
Linus Torvalds's avatar
Linus Torvalds committed
265
266
 */

267
268
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
269

Linus Torvalds's avatar
Linus Torvalds committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
316
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds's avatar
Linus Torvalds committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
Eric Dumazet's avatar
Eric Dumazet committed
341
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
342
343
344
345
346
347
348
349
350
351
352
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
Eric Dumazet's avatar
Eric Dumazet committed
353
	list_del_init(&dentry->d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
380
		inc_nlink(inode);
Linus Torvalds's avatar
Linus Torvalds committed
381
382
383
384
385
386
387
388
389
390
391
392
393
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

394
395
396
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
397
{
398
	return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
Linus Torvalds's avatar
Linus Torvalds committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
 *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_dentry->d_fsdata
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
442
 * Call with manage_mutex held.  Writes path of cpuset into buf.
Linus Torvalds's avatar
Linus Torvalds committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
486
487
488
489
490
491
492
493
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
494
 * When we had only one cpuset mutex, we had to call this
495
496
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
497
498
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
Linus Torvalds's avatar
Linus Torvalds committed
499
500
 */

501
static void cpuset_release_agent(const char *pathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
502
503
504
505
{
	char *argv[3], *envp[3];
	int i;

506
507
508
	if (!pathbuf)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
509
510
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
511
	argv[i++] = (char *)pathbuf;
Linus Torvalds's avatar
Linus Torvalds committed
512
513
514
515
516
517
518
519
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

520
521
	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
522
523
524
525
526
527
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
528
529
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
530
531
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
532
533
534
535
536
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
537
538
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
539
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
Linus Torvalds's avatar
Linus Torvalds committed
540
541
 */

542
static void check_for_release(struct cpuset *cs, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
543
544
545
546
547
548
549
550
551
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
552
553
554
			kfree(buf);
		else
			*ppathbuf = buf;
Linus Torvalds's avatar
Linus Torvalds committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
569
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
593
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
594
595
596
597
598
599
600
601
602
603
604
605
606
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

607
608
609
610
611
612
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
613
 *
614
615
616
617
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
618
619
620
621
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
622
 * current->mm->mmap_sem during call.
623
 *
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
642
643
644
645
646
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
647
648
 */

649
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
650
{
651
	int my_cpusets_mem_gen;
652
	struct task_struct *tsk = current;
653
	struct cpuset *cs;
654

655
656
657
658
659
660
661
662
663
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
664

665
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
666
		mutex_lock(&callback_mutex);
667
668
669
670
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
671
672
673
674
675
676
677
678
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
679
		task_unlock(tsk);
680
		mutex_unlock(&callback_mutex);
681
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
682
683
684
685
686
687
688
689
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
690
 * are only set if the other's are set.  Call holding manage_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
708
 * manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
732
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
733
734
		return 0;

735
736
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

756
757
758
759
760
761
762
763
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
764
 * Call with manage_mutex held.  May nest a call to the
765
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
766
767
 * Must not be called holding callback_mutex, because we must
 * not call lock_cpu_hotplug() while holding callback_mutex.
768
 */
769

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
787
	if (!is_cpu_exclusive(cur)) {
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

811
/*
812
 * Call with manage_mutex held.  May take callback_mutex during call.
813
814
 */

Linus Torvalds's avatar
Linus Torvalds committed
815
816
817
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
818
	int retval, cpus_unchanged;
Linus Torvalds's avatar
Linus Torvalds committed
819

820
821
822
823
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
824
825
826
827
828
829
830
831
	trialcs = *cs;
	retval = cpulist_parse(buf, trialcs.cpus_allowed);
	if (retval < 0)
		return retval;
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	if (cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
832
833
834
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
835
	mutex_lock(&callback_mutex);
836
	cs->cpus_allowed = trialcs.cpus_allowed;
837
	mutex_unlock(&callback_mutex);
838
839
840
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
841
842
}

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

892
/*
893
894
895
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
896
897
898
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
899
 *
900
 * Call with manage_mutex held.  May take callback_mutex during call.
901
902
903
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
904
905
 */

Linus Torvalds's avatar
Linus Torvalds committed
906
907
908
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
909
	nodemask_t oldmem;
910
911
912
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
913
	int migrate;
914
	int fudge;
Linus Torvalds's avatar
Linus Torvalds committed
915
916
	int retval;

917
918
919
920
	/* top_cpuset.mems_allowed tracks node_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
921
922
923
	trialcs = *cs;
	retval = nodelist_parse(buf, trialcs.mems_allowed);
	if (retval < 0)
924
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
925
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
926
927
928
929
930
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
931
932
933
	if (nodes_empty(trialcs.mems_allowed)) {
		retval = -ENOSPC;
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
934
	}
935
936
937
938
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

939
	mutex_lock(&callback_mutex);
940
	cs->mems_allowed = trialcs.mems_allowed;
941
	cs->mems_generation = cpuset_mems_generation++;
942
	mutex_unlock(&callback_mutex);
943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		write_lock_irq(&tasklist_lock);		/* block fork */
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
		write_unlock_irq(&tasklist_lock);	/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
	write_unlock_irq(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
998
	 * cpuset manage_mutex, we know that no other rebind effort will
999
1000
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1001
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1002
	 */
1003
	migrate = is_memory_migrate(cs);
1004
1005
1006
1007
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1008
1009
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1010
1011
1012
1013
1014
1015
1016
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
1017
done:
Linus Torvalds's avatar
Linus Torvalds committed
1018
1019
1020
	return retval;
}

1021
/*
1022
 * Call with manage_mutex held.
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1034
1035
1036
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1037
1038
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
1039
1040
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1041
 *
1042
 * Call with manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1043
1044
1045
1046
1047
1048
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1049
	int err, cpu_exclusive_changed;
Linus Torvalds's avatar
Linus Torvalds committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1060
1061
1062
1063
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1064
	mutex_lock(&callback_mutex);
1065
	cs->flags = trialcs.flags;
1066
	mutex_unlock(&callback_mutex);
1067
1068
1069
1070

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1071
1072
}

1073
/*
1074
 * Frequency meter - How fast is some event occurring?
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1171
1172
1173
1174
1175
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1176
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1177
1178
1179
 * the task 'pid' during call.
 */

1180
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
1181
1182
1183
1184
1185
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1186
	nodemask_t from, to;
1187
	struct mm_struct *mm;
1188
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
1189

1190
	if (sscanf(pidbuf, "%d", &pid) != 1)
Linus Torvalds's avatar
Linus Torvalds committed
1191
1192
1193
1194
1195
1196
1197
1198
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1199
		if (!tsk || tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1217
1218
1219
1220
1221
1222
	retval = security_task_setscheduler(tsk, 0, NULL);
	if (retval) {
		put_task_struct(tsk);
		return retval;
	}

1223
	mutex_lock(&callback_mutex);
1224

Linus Torvalds's avatar
Linus Torvalds committed
1225
1226
	task_lock(tsk);
	oldcs = tsk->cpuset;
1227
1228
1229
1230
1231
1232
	/*
	 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
	 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
	 * then fail this attach_task(), to avoid breaking top_cpuset.count.
	 */
	if (tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1233
		task_unlock(tsk);
1234
		mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1235
1236
1237
1238
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1239
	rcu_assign_pointer(tsk->cpuset, cs);
Linus Torvalds's avatar
Linus Torvalds committed
1240
1241
1242
1243
1244
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1245
1246
1247
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1248
	mutex_unlock(&callback_mutex);
1249
1250
1251
1252

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1253
		if (is_memory_migrate(cs))
1254
			cpuset_migrate_mm(mm, &from, &to);
1255
1256
1257
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1258
	put_task_struct(tsk);
1259
	synchronize_rcu();
Linus Torvalds's avatar
Linus Torvalds committed
1260
	if (atomic_dec_and_test(&oldcs->count))
1261
		check_for_release(oldcs, ppathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1262
1263
1264
1265
1266
1267
1268
1269
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1270
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1271
1272
1273
1274
1275
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1276
1277
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1278
1279
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
	FILE_TASKLIST,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_dentry);
	cpuset_filetype_t type = cft->private;
	char *buffer;
1290
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * NR_CPUS)
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1307
	mutex_lock(&manage_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1330
1331
1332
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1333
1334
1335
1336
1337
1338
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1339
1340
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1341
		cs->mems_generation = cpuset_mems_generation++;
1342
1343
1344
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1345
		cs->mems_generation = cpuset_mems_generation++;
1346
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1347
	case FILE_TASKLIST:
1348
		retval = attach_task(cs, buffer, &pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1358
	mutex_unlock(&manage_mutex);
1359
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1398
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1399
	mask = cs->cpus_allowed;
1400
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1401
1402
1403
1404
1405
1406
1407
1408

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1409
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1410
	mask = cs->mems_allowed;
1411
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
1447
1448
1449
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1450
1451
1452
1453
1454
1455
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1456
1457
1458
1459
1460
1461
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1462
1463
1464
1465
1466
1467
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

Al Viro's avatar
Al Viro committed
1468
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds's avatar
Linus Torvalds committed
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

Linus Torvalds's avatar
Linus Torvalds committed
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
static struct file_operations cpuset_file_operations = {
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

static struct inode_operations cpuset_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
Paul Jackson's avatar
Paul Jackson committed
1546
	.rename = cpuset_rename,
Linus Torvalds's avatar
Linus Torvalds committed
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
1567
		inc_nlink(inode);
Linus Torvalds's avatar
Linus Torvalds committed
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
1580
 *	cs:	the cpuset we create the directory for.
Linus Torvalds's avatar
Linus Torvalds committed
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
1600
		inc_nlink(parent->d_inode);
Linus Torvalds's avatar
Linus Torvalds committed
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

1613
	mutex_lock(&dir->d_inode->i_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1614
1615
1616
1617
1618
1619
1620
1621
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
1622
	mutex_unlock(&dir->d_inode->i_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1650
1651
1652
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
Linus Torvalds's avatar
Linus Torvalds committed
1653
 */
1654
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
Linus Torvalds's avatar
Linus Torvalds committed
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			pidarray[n++] = p->pid;
			if (unlikely(n == npids))
				goto array_full;
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

1694
1695
1696
1697
/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
1698
 * Does not require any specific cpuset mutexes, and does not take any.