cpuset.c 79 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
Linus Torvalds's avatar
Linus Torvalds committed
8
9
10
11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
Linus Torvalds's avatar
Linus Torvalds committed
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
Linus Torvalds's avatar
Linus Torvalds committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
33
#include <linux/mempolicy.h>
Linus Torvalds's avatar
Linus Torvalds committed
34
35
36
37
38
39
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
40
#include <linux/rcupdate.h>
Linus Torvalds's avatar
Linus Torvalds committed
41
42
#include <linux/sched.h>
#include <linux/seq_file.h>
43
#include <linux/security.h>
Linus Torvalds's avatar
Linus Torvalds committed
44
45
46
47
48
49
50
51
52
53
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
54
#include <linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
55

56
#define CPUSET_SUPER_MAGIC		0x27e0eb
Linus Torvalds's avatar
Linus Torvalds committed
57

58
59
60
61
62
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
63
int number_of_cpusets __read_mostly;
64

65
66
67
68
69
70
71
72
73
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

Linus Torvalds's avatar
Linus Torvalds committed
74
75
76
77
78
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

79
80
81
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
98
99
100
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
Linus Torvalds's avatar
Linus Torvalds committed
101
102
103
104
105
106
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
107
	CS_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
108
	CS_REMOVED,
109
110
111
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
112
113
114
115
116
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
117
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
118
119
120
121
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
122
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
123
124
125
126
}

static inline int is_removed(const struct cpuset *cs)
{
127
	return test_bit(CS_REMOVED, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
128
129
130
131
}

static inline int notify_on_release(const struct cpuset *cs)
{
132
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
Linus Torvalds's avatar
Linus Torvalds committed
133
134
}

135
136
static inline int is_memory_migrate(const struct cpuset *cs)
{
137
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
138
139
}

140
141
142
143
144
145
146
147
148
149
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

Linus Torvalds's avatar
Linus Torvalds committed
150
/*
151
 * Increment this integer everytime any cpuset changes its
Linus Torvalds's avatar
Linus Torvalds committed
152
153
154
155
156
157
158
159
160
161
162
163
164
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
165
166
167
 *
 * Since cpuset_mems_generation is guarded by manage_mutex,
 * there is no need to mark it atomic.
Linus Torvalds's avatar
Linus Torvalds committed
168
 */
169
static int cpuset_mems_generation;
Linus Torvalds's avatar
Linus Torvalds committed
170
171
172
173
174
175
176
177
178
179
180

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
181
static struct super_block *cpuset_sb;
Linus Torvalds's avatar
Linus Torvalds committed
182
183

/*
184
185
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
186
187
188
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
189
190
191
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
192
193
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
194
 * also allocate memory while just holding manage_mutex.  While it is
195
 * performing these checks, various callback routines can briefly
196
197
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
198
199
 *
 * Calls to the kernel memory allocator can not be made while holding
200
 * callback_mutex, as that would risk double tripping on callback_mutex
201
202
203
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
204
 * If a task is only holding callback_mutex, then it has read-only
205
206
207
208
209
210
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
211
 * So in general, code holding manage_mutex or callback_mutex can't rely
212
 * on the count field not changing.  However, if the count goes to
213
 * zero, then only attach_task(), which holds both mutexes, can
214
215
216
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
217
 * So code holding manage_mutex or callback_mutex can safely assume that
218
 * if the count is zero, it will stay zero.  Similarly, if a task
219
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
220
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
221
 * both of those mutexes.
222
223
 *
 * The cpuset_common_file_write handler for operations that modify
224
 * the cpuset hierarchy holds manage_mutex across the entire operation,
225
226
 * single threading all such cpuset modifications across the system.
 *
227
 * The cpuset_common_file_read() handlers only hold callback_mutex across
228
229
230
231
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
232
 * (usually) take either mutex.  These are the two most performance
233
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
234
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
235
 * is taken, and if the cpuset count is zero, a usermode call made
Linus Torvalds's avatar
Linus Torvalds committed
236
237
238
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
239
240
241
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
242
 * least one task in the system (init), therefore, top_cpuset
243
244
245
246
247
248
249
250
251
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
252
 * so using both mutexes, however there are several performance
253
 * critical places that need to reference task->cpuset without the
254
 * expense of grabbing a system global mutex.  Therefore except as
255
256
257
258
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
259
260
261
262
263
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
Linus Torvalds's avatar
Linus Torvalds committed
264
265
 */

266
267
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
268

Linus Torvalds's avatar
Linus Torvalds committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
315
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
Linus Torvalds's avatar
Linus Torvalds committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
Eric Dumazet's avatar
Eric Dumazet committed
340
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
341
342
343
344
345
346
347
348
349
350
351
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
Eric Dumazet's avatar
Eric Dumazet committed
352
	list_del_init(&dentry->d_u.d_child);
Linus Torvalds's avatar
Linus Torvalds committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
379
		inc_nlink(inode);
Linus Torvalds's avatar
Linus Torvalds committed
380
381
382
383
384
385
386
387
388
389
390
391
392
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

393
394
395
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
Linus Torvalds's avatar
Linus Torvalds committed
396
{
397
	return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
Linus Torvalds's avatar
Linus Torvalds committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
415
416
 *	- the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
Linus Torvalds's avatar
Linus Torvalds committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
441
 * Call with manage_mutex held.  Writes path of cpuset into buf.
Linus Torvalds's avatar
Linus Torvalds committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
485
486
487
488
489
490
491
492
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
493
 * When we had only one cpuset mutex, we had to call this
494
495
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
496
497
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
Linus Torvalds's avatar
Linus Torvalds committed
498
499
 */

500
static void cpuset_release_agent(const char *pathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
501
502
503
504
{
	char *argv[3], *envp[3];
	int i;

505
506
507
	if (!pathbuf)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
508
509
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
510
	argv[i++] = (char *)pathbuf;
Linus Torvalds's avatar
Linus Torvalds committed
511
512
513
514
515
516
517
518
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

519
520
	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
521
522
523
524
525
526
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
527
528
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
529
530
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
531
532
533
534
535
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
536
537
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
538
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
Linus Torvalds's avatar
Linus Torvalds committed
539
540
 */

541
static void check_for_release(struct cpuset *cs, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
542
543
544
545
546
547
548
549
550
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551
552
553
			kfree(buf);
		else
			*ppathbuf = buf;
Linus Torvalds's avatar
Linus Torvalds committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
568
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
592
 * Call with callback_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
593
594
595
596
597
598
599
600
601
602
603
604
605
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

606
607
608
609
610
611
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
612
 *
613
614
615
616
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
617
618
619
620
 * Call without callback_mutex or task_lock() held.  May be
 * called with or without manage_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
 * be NULL.  This routine also might acquire callback_mutex and
621
 * current->mm->mmap_sem during call.
622
 *
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
641
642
643
644
645
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
Linus Torvalds's avatar
Linus Torvalds committed
646
647
 */

648
void cpuset_update_task_memory_state(void)
Linus Torvalds's avatar
Linus Torvalds committed
649
{
650
	int my_cpusets_mem_gen;
651
	struct task_struct *tsk = current;
652
	struct cpuset *cs;
653

654
655
656
657
658
659
660
661
662
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
Linus Torvalds's avatar
Linus Torvalds committed
663

664
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
665
		mutex_lock(&callback_mutex);
666
667
668
669
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
670
671
672
673
674
675
676
677
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
678
		task_unlock(tsk);
679
		mutex_unlock(&callback_mutex);
680
		mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds's avatar
Linus Torvalds committed
681
682
683
684
685
686
687
688
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
689
 * are only set if the other's are set.  Call holding manage_mutex.
Linus Torvalds's avatar
Linus Torvalds committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
707
 * manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
731
	if (cur == &top_cpuset)
Linus Torvalds's avatar
Linus Torvalds committed
732
733
		return 0;

734
735
	par = cur->parent;

Linus Torvalds's avatar
Linus Torvalds committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

755
756
757
758
759
760
761
762
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
763
 * Call with manage_mutex held.  May nest a call to the
764
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
765
766
 * Must not be called holding callback_mutex, because we must
 * not call lock_cpu_hotplug() while holding callback_mutex.
767
 */
768

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
786
	if (!is_cpu_exclusive(cur)) {
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

810
/*
811
 * Call with manage_mutex held.  May take callback_mutex during call.
812
813
 */

Linus Torvalds's avatar
Linus Torvalds committed
814
815
816
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
817
	int retval, cpus_unchanged;
Linus Torvalds's avatar
Linus Torvalds committed
818

819
820
821
822
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
823
	trialcs = *cs;
824
825
826
827
828
829
830
831
832
833
834
835
836

	/*
	 * We allow a cpuset's cpus_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		cpus_clear(trialcs.cpus_allowed);
	} else {
		retval = cpulist_parse(buf, trialcs.cpus_allowed);
		if (retval < 0)
			return retval;
	}
Linus Torvalds's avatar
Linus Torvalds committed
837
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
838
839
	/* cpus_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
Linus Torvalds's avatar
Linus Torvalds committed
840
841
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
842
843
844
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
845
	mutex_lock(&callback_mutex);
846
	cs->cpus_allowed = trialcs.cpus_allowed;
847
	mutex_unlock(&callback_mutex);
848
849
850
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
851
852
}

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
 *    Call holding manage_mutex, so our current->cpuset won't change
 *    during this call, as manage_mutex holds off any attach_task()
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
 *    our tasks cpuset.
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
	guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
	mutex_unlock(&callback_mutex);
}

902
/*
903
904
905
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
906
907
908
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
909
 *
910
 * Call with manage_mutex held.  May take callback_mutex during call.
911
912
913
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
914
915
 */

Linus Torvalds's avatar
Linus Torvalds committed
916
917
918
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
919
	nodemask_t oldmem;
920
921
922
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
923
	int migrate;
924
	int fudge;
Linus Torvalds's avatar
Linus Torvalds committed
925
926
	int retval;

927
928
929
930
	/* top_cpuset.mems_allowed tracks node_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

Linus Torvalds's avatar
Linus Torvalds committed
931
	trialcs = *cs;
932
933
934
935
936
937
938
939
940
941
942
943
944

	/*
	 * We allow a cpuset's mems_allowed to be empty; if it has attached
	 * tasks, we'll catch it later when we validate the change and return
	 * -ENOSPC.
	 */
	if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
		nodes_clear(trialcs.mems_allowed);
	} else {
		retval = nodelist_parse(buf, trialcs.mems_allowed);
		if (retval < 0)
			goto done;
	}
Linus Torvalds's avatar
Linus Torvalds committed
945
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
946
947
948
949
950
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
951
952
	/* mems_allowed cannot be empty for a cpuset with attached tasks. */
	if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
953
954
		retval = -ENOSPC;
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
955
	}
956
957
958
959
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

960
	mutex_lock(&callback_mutex);
961
	cs->mems_allowed = trialcs.mems_allowed;
962
	cs->mems_generation = cpuset_mems_generation++;
963
	mutex_unlock(&callback_mutex);
964

965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		write_lock_irq(&tasklist_lock);		/* block fork */
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
		write_unlock_irq(&tasklist_lock);	/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
	write_unlock_irq(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
1019
	 * cpuset manage_mutex, we know that no other rebind effort will
1020
1021
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1022
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1023
	 */
1024
	migrate = is_memory_migrate(cs);
1025
1026
1027
1028
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1029
1030
		if (migrate)
			cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1031
1032
1033
1034
1035
1036
1037
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
1038
done:
Linus Torvalds's avatar
Linus Torvalds committed
1039
1040
1041
	return retval;
}

1042
/*
1043
 * Call with manage_mutex held.
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
1055
1056
1057
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1058
1059
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
1060
1061
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
1062
 *
1063
 * Call with manage_mutex held.
Linus Torvalds's avatar
Linus Torvalds committed
1064
1065
1066
1067
1068
1069
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
1070
	int err, cpu_exclusive_changed;
Linus Torvalds's avatar
Linus Torvalds committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1081
1082
1083
1084
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1085
	mutex_lock(&callback_mutex);
1086
	cs->flags = trialcs.flags;
1087
	mutex_unlock(&callback_mutex);
1088
1089
1090
1091

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1092
1093
}

1094
/*
1095
 * Frequency meter - How fast is some event occurring?
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1192
1193
1194
1195
1196
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1197
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1198
1199
1200
 * the task 'pid' during call.
 */

1201
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
Linus Torvalds's avatar
Linus Torvalds committed
1202
1203
1204
1205
1206
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1207
	nodemask_t from, to;
1208
	struct mm_struct *mm;
1209
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
1210

1211
	if (sscanf(pidbuf, "%d", &pid) != 1)
Linus Torvalds's avatar
Linus Torvalds committed
1212
1213
1214
1215
1216
1217
1218
1219
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1220
		if (!tsk || tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1238
1239
1240
1241
1242
1243
	retval = security_task_setscheduler(tsk, 0, NULL);
	if (retval) {
		put_task_struct(tsk);
		return retval;
	}

1244
	mutex_lock(&callback_mutex);
1245

Linus Torvalds's avatar
Linus Torvalds committed
1246
1247
	task_lock(tsk);
	oldcs = tsk->cpuset;
1248
1249
1250
1251
1252
1253
	/*
	 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
	 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
	 * then fail this attach_task(), to avoid breaking top_cpuset.count.
	 */
	if (tsk->flags & PF_EXITING) {
Linus Torvalds's avatar
Linus Torvalds committed
1254
		task_unlock(tsk);
1255
		mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1256
1257
1258
1259
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1260
	rcu_assign_pointer(tsk->cpuset, cs);
Linus Torvalds's avatar
Linus Torvalds committed
1261
1262
1263
1264
1265
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1266
1267
1268
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1269
	mutex_unlock(&callback_mutex);
1270
1271
1272
1273

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1274
		if (is_memory_migrate(cs))
1275
			cpuset_migrate_mm(mm, &from, &to);
1276
1277
1278
		mmput(mm);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1279
	put_task_struct(tsk);
1280
	synchronize_rcu();
Linus Torvalds's avatar
Linus Torvalds committed
1281
	if (atomic_dec_and_test(&oldcs->count))
1282
		check_for_release(oldcs, ppathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1283
1284
1285
1286
1287
1288
1289
1290
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1291
	FILE_MEMORY_MIGRATE,
Linus Torvalds's avatar
Linus Torvalds committed
1292
1293
1294
1295
1296
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1297
1298
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1299
1300
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
Linus Torvalds's avatar
Linus Torvalds committed
1301
1302
1303
	FILE_TASKLIST,
} cpuset_filetype_t;

1304
1305
static ssize_t cpuset_common_file_write(struct file *file,
					const char __user *userbuf,
Linus Torvalds's avatar
Linus Torvalds committed
1306
1307
					size_t nbytes, loff_t *unused_ppos)
{
1308
1309
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1310
1311
	cpuset_filetype_t type = cft->private;
	char *buffer;
1312
	char *pathbuf = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1313
1314
1315
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
1316
	if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
Linus Torvalds's avatar
Linus Torvalds committed
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1329
	mutex_lock(&manage_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1352
1353
1354
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1355
1356
1357
1358
1359
1360
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1361
1362
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1363
		cs->mems_generation = cpuset_mems_generation++;
1364
1365
1366
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1367
		cs->mems_generation = cpuset_mems_generation++;
1368
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1369
	case FILE_TASKLIST:
1370
		retval = attach_task(cs, buffer, &pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1371
1372
1373
1374
1375
1376
1377
1378
1379
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1380
	mutex_unlock(&manage_mutex);
1381
	cpuset_release_agent(pathbuf);
Linus Torvalds's avatar
Linus Torvalds committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
1391
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1420
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1421
	mask = cs->cpus_allowed;
1422
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1423
1424
1425
1426
1427
1428
1429
1430

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1431
	mutex_lock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1432
	mask = cs->mems_allowed;
1433
	mutex_unlock(&callback_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1434
1435
1436
1437
1438
1439
1440

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
1441
1442
	struct cftype *cft = __d_cft(file->f_path.dentry);
	struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
Linus Torvalds's avatar
Linus Torvalds committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
1469
1470
1471
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1472
1473
1474
1475
1476
1477
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1478
1479
1480
1481
1482
1483
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1484
1485
1486
1487
1488
1489
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

Al Viro's avatar
Al Viro committed
1490
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds's avatar
Linus Torvalds committed
1491
1492
1493
1494
1495
1496
1497
1498
1499
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
1500
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

1522
	cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
1535
	struct cftype *cft = __d_cft(file->f_path.dentry);
Linus Torvalds's avatar
Linus Torvalds committed
1536
1537
1538
1539
1540
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

Paul Jackson's avatar
Paul Jackson committed
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

1556
static const struct file_operations cpuset_file_operations = {
Linus Torvalds's avatar
Linus Torvalds committed
1557
1558
1559
1560
1561
1562
1563
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

1564
static const struct inode_operations cpuset_dir_inode_operations = {
Linus Torvalds's avatar
Linus Torvalds committed
1565
1566
1567
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
Paul Jackson's avatar
Paul Jackson committed
1568
	.rename = cpuset_rename,
Linus Torvalds's avatar
Linus Torvalds committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
1589
		inc_nlink(inode);
Linus Torvalds's avatar
Linus Torvalds committed
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
1602
 *	cs:	the cpuset we create the directory for.
Linus Torvalds's avatar
Linus Torvalds committed
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
1622
		inc_nlink(parent->d_inode);
Linus Torvalds's avatar
Linus Torvalds committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

1635
	mutex_lock(&dir->d_inode