blk-flush.c 14.8 KB
Newer Older
1
/*
2
 * Functions to sequence FLUSH and FUA writes.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
 * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
 * properties and hardware capability.
 *
 * If a request doesn't have data, only REQ_FLUSH makes sense, which
 * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
 * that the device cache should be flushed before the data is executed, and
 * REQ_FUA means that the data must be on non-volatile media on request
 * completion.
 *
 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
 * difference.  The requests are either completed immediately if there's no
 * data or executed as normal requests otherwise.
 *
 * If the device has writeback cache and supports FUA, REQ_FLUSH is
 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
 *
 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
 *
 * The actual execution of flush is double buffered.  Whenever a request
 * needs to execute PRE or POSTFLUSH, it queues at
31
 * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
 * flush is issued and the pending_idx is toggled.  When the flush
 * completes, all the requests which were pending are proceeded to the next
 * step.  This allows arbitrary merging of different types of FLUSH/FUA
 * requests.
 *
 * Currently, the following conditions are used to determine when to issue
 * flush.
 *
 * C1. At any given time, only one flush shall be in progress.  This makes
 *     double buffering sufficient.
 *
 * C2. Flush is deferred if any request is executing DATA of its sequence.
 *     This avoids issuing separate POSTFLUSHes for requests which shared
 *     PREFLUSH.
 *
 * C3. The second condition is ignored if there is a request which has
 *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
 *     starvation in the unlikely case where there are continuous stream of
 *     FUA (without FLUSH) requests.
 *
 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
 * is beneficial.
 *
 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
 * Once while executing DATA and again after the whole sequence is
 * complete.  The first completion updates the contained bio but doesn't
 * finish it so that the bio submitter is notified only after the whole
 * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
 * req_bio_endio().
 *
 * The above peculiarity requires that each FLUSH/FUA request has only one
 * bio attached to it, which is guaranteed as they aren't allowed to be
 * merged in the usual way.
65
 */
66

67
68
69
70
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
71
#include <linux/gfp.h>
72
#include <linux/blk-mq.h>
73
74

#include "blk.h"
75
#include "blk-mq.h"
76

77
78
/* FLUSH/FUA sequences */
enum {
79
80
81
82
83
84
85
86
87
88
89
90
91
	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
	REQ_FSEQ_DONE		= (1 << 3),

	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
				  REQ_FSEQ_POSTFLUSH,

	/*
	 * If flush has been pending longer than the following timeout,
	 * it's issued even if flush_data requests are still in flight.
	 */
	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92
93
};

94
95
static bool blk_kick_flush(struct request_queue *q,
			   struct blk_flush_queue *fq);
96

97
static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
98
{
99
	unsigned int policy = 0;
100

101
102
103
	if (blk_rq_sectors(rq))
		policy |= REQ_FSEQ_DATA;

104
105
106
107
108
	if (fflags & REQ_FLUSH) {
		if (rq->cmd_flags & REQ_FLUSH)
			policy |= REQ_FSEQ_PREFLUSH;
		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
			policy |= REQ_FSEQ_POSTFLUSH;
109
	}
110
	return policy;
111
112
}

113
static unsigned int blk_flush_cur_seq(struct request *rq)
114
{
115
116
	return 1 << ffz(rq->flush.seq);
}
117

118
119
static void blk_flush_restore_request(struct request *rq)
{
120
	/*
121
122
123
	 * After flush data completion, @rq->bio is %NULL but we need to
	 * complete the bio again.  @rq->biotail is guaranteed to equal the
	 * original @rq->bio.  Restore it.
124
	 */
125
126
127
128
	rq->bio = rq->biotail;

	/* make @rq a normal request */
	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
129
	rq->end_io = rq->flush.saved_end_io;
130
131
}

132
static bool blk_flush_queue_rq(struct request *rq, bool add_front)
133
{
134
	if (rq->q->mq_ops) {
135
136
137
138
		struct request_queue *q = rq->q;

		blk_mq_add_to_requeue_list(rq, add_front);
		blk_mq_kick_requeue_list(q);
139
140
		return false;
	} else {
141
142
143
144
		if (add_front)
			list_add(&rq->queuelist, &rq->q->queue_head);
		else
			list_add_tail(&rq->queuelist, &rq->q->queue_head);
145
146
		return true;
	}
147
148
}

149
150
151
/**
 * blk_flush_complete_seq - complete flush sequence
 * @rq: FLUSH/FUA request being sequenced
152
 * @fq: flush queue
153
154
155
156
157
158
159
 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
 * @error: whether an error occurred
 *
 * @rq just completed @seq part of its flush sequence, record the
 * completion and trigger the next step.
 *
 * CONTEXT:
160
 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
161
162
163
164
 *
 * RETURNS:
 * %true if requests were added to the dispatch queue, %false otherwise.
 */
165
166
167
static bool blk_flush_complete_seq(struct request *rq,
				   struct blk_flush_queue *fq,
				   unsigned int seq, int error)
168
{
169
	struct request_queue *q = rq->q;
170
	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171
	bool queued = false, kicked;
172
173
174
175
176
177
178
179
180
181
182
183
184
185

	BUG_ON(rq->flush.seq & seq);
	rq->flush.seq |= seq;

	if (likely(!error))
		seq = blk_flush_cur_seq(rq);
	else
		seq = REQ_FSEQ_DONE;

	switch (seq) {
	case REQ_FSEQ_PREFLUSH:
	case REQ_FSEQ_POSTFLUSH:
		/* queue for flush */
		if (list_empty(pending))
186
			fq->flush_pending_since = jiffies;
187
188
189
190
		list_move_tail(&rq->flush.list, pending);
		break;

	case REQ_FSEQ_DATA:
191
		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
192
		queued = blk_flush_queue_rq(rq, true);
193
194
195
196
197
198
199
200
201
202
203
204
		break;

	case REQ_FSEQ_DONE:
		/*
		 * @rq was previously adjusted by blk_flush_issue() for
		 * flush sequencing and may already have gone through the
		 * flush data request completion path.  Restore @rq for
		 * normal completion and end it.
		 */
		BUG_ON(!list_empty(&rq->queuelist));
		list_del_init(&rq->flush.list);
		blk_flush_restore_request(rq);
205
		if (q->mq_ops)
206
			blk_mq_end_request(rq, error);
207
208
		else
			__blk_end_request_all(rq, error);
209
210
211
212
213
214
		break;

	default:
		BUG();
	}

215
	kicked = blk_kick_flush(q, fq);
216
	return kicked | queued;
217
218
}

219
static void flush_end_io(struct request *flush_rq, int error)
220
{
221
	struct request_queue *q = flush_rq->q;
222
	struct list_head *running;
223
224
	bool queued = false;
	struct request *rq, *n;
225
	unsigned long flags = 0;
226
	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
227

228
	if (q->mq_ops) {
229
		spin_lock_irqsave(&fq->mq_flush_lock, flags);
230
		flush_rq->tag = -1;
231
	}
232

233
234
	running = &fq->flush_queue[fq->flush_running_idx];
	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
235
236

	/* account completion of the flush request */
237
	fq->flush_running_idx ^= 1;
238
239
240

	if (!q->mq_ops)
		elv_completed_request(q, flush_rq);
241
242
243
244
245
246

	/* and push the waiting requests to the next stage */
	list_for_each_entry_safe(rq, n, running, flush.list) {
		unsigned int seq = blk_flush_cur_seq(rq);

		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
247
		queued |= blk_flush_complete_seq(rq, fq, seq, error);
248
249
	}

250
	/*
251
252
253
254
255
256
257
258
259
	 * Kick the queue to avoid stall for two cases:
	 * 1. Moving a request silently to empty queue_head may stall the
	 * queue.
	 * 2. When flush request is running in non-queueable queue, the
	 * queue is hold. Restart the queue after flush request is finished
	 * to avoid stall.
	 * This function is called from request completion path and calling
	 * directly into request_fn may confuse the driver.  Always use
	 * kblockd.
260
	 */
261
	if (queued || fq->flush_queue_delayed) {
262
263
		WARN_ON(q->mq_ops);
		blk_run_queue_async(q);
264
	}
265
	fq->flush_queue_delayed = 0;
266
	if (q->mq_ops)
267
		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
268
269
}

270
271
272
/**
 * blk_kick_flush - consider issuing flush request
 * @q: request_queue being kicked
273
 * @fq: flush queue
274
275
276
277
278
 *
 * Flush related states of @q have changed, consider issuing flush request.
 * Please read the comment at the top of this file for more info.
 *
 * CONTEXT:
279
 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
280
281
282
283
 *
 * RETURNS:
 * %true if flush was issued, %false otherwise.
 */
284
static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
285
{
286
	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
287
288
	struct request *first_rq =
		list_first_entry(pending, struct request, flush.list);
289
	struct request *flush_rq = fq->flush_rq;
290
291

	/* C1 described at the top of this file */
292
	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
293
294
295
		return false;

	/* C2 and C3 */
296
	if (!list_empty(&fq->flush_data_in_flight) &&
297
	    time_before(jiffies,
298
			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
299
300
301
302
303
304
		return false;

	/*
	 * Issue flush and toggle pending_idx.  This makes pending_idx
	 * different from running_idx, which means flush is in flight.
	 */
305
	fq->flush_pending_idx ^= 1;
306

307
	blk_rq_init(q, flush_rq);
308
309
310
311
312
313
314
315
316

	/*
	 * Borrow tag from the first request since they can't
	 * be in flight at the same time.
	 */
	if (q->mq_ops) {
		flush_rq->mq_ctx = first_rq->mq_ctx;
		flush_rq->tag = first_rq->tag;
	}
317

318
319
320
321
	flush_rq->cmd_type = REQ_TYPE_FS;
	flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
	flush_rq->rq_disk = first_rq->rq_disk;
	flush_rq->end_io = flush_end_io;
322

323
	return blk_flush_queue_rq(flush_rq, false);
324
325
}

326
static void flush_data_end_io(struct request *rq, int error)
327
{
328
	struct request_queue *q = rq->q;
329
	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
330

331
332
333
334
	/*
	 * After populating an empty queue, kick it to avoid stall.  Read
	 * the comment in flush_end_io().
	 */
335
	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
336
		blk_run_queue_async(q);
337
338
}

339
340
341
342
static void mq_flush_data_end_io(struct request *rq, int error)
{
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx;
343
	struct blk_mq_ctx *ctx = rq->mq_ctx;
344
	unsigned long flags;
345
	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
346
347
348
349
350
351
352

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * After populating an empty queue, kick it to avoid stall.  Read
	 * the comment in flush_end_io().
	 */
353
	spin_lock_irqsave(&fq->mq_flush_lock, flags);
354
	if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
355
		blk_mq_run_hw_queue(hctx, true);
356
	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
357
358
}

359
360
361
362
/**
 * blk_insert_flush - insert a new FLUSH/FUA request
 * @rq: request to insert
 *
363
 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
364
 * or __blk_mq_run_hw_queue() to dispatch request.
365
366
367
368
 * @rq is being submitted.  Analyze what needs to be done and put it on the
 * right queue.
 *
 * CONTEXT:
369
 * spin_lock_irq(q->queue_lock) in !mq case
370
371
 */
void blk_insert_flush(struct request *rq)
372
{
373
374
375
	struct request_queue *q = rq->q;
	unsigned int fflags = q->flush_flags;	/* may change, cache */
	unsigned int policy = blk_flush_policy(fflags, rq);
376
	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
377

378
379
380
381
	/*
	 * @policy now records what operations need to be done.  Adjust
	 * REQ_FLUSH and FUA for the driver.
	 */
382
	rq->cmd_flags &= ~REQ_FLUSH;
383
384
385
	if (!(fflags & REQ_FUA))
		rq->cmd_flags &= ~REQ_FUA;

386
387
388
389
390
391
392
	/*
	 * An empty flush handed down from a stacking driver may
	 * translate into nothing if the underlying device does not
	 * advertise a write-back cache.  In this case, simply
	 * complete the request.
	 */
	if (!policy) {
393
		if (q->mq_ops)
394
			blk_mq_end_request(rq, 0);
395
396
		else
			__blk_end_bidi_request(rq, 0, 0, 0);
397
398
399
		return;
	}

400
	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
401

402
403
404
405
406
407
408
	/*
	 * If there's data but flush is not necessary, the request can be
	 * processed directly without going through flush machinery.  Queue
	 * for normal execution.
	 */
	if ((policy & REQ_FSEQ_DATA) &&
	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
409
		if (q->mq_ops) {
410
			blk_mq_insert_request(rq, false, false, true);
411
412
		} else
			list_add_tail(&rq->queuelist, &q->queue_head);
413
		return;
414
	}
415

416
417
418
419
420
421
	/*
	 * @rq should go through flush machinery.  Mark it part of flush
	 * sequence and submit for further processing.
	 */
	memset(&rq->flush, 0, sizeof(rq->flush));
	INIT_LIST_HEAD(&rq->flush.list);
Tejun Heo's avatar
Tejun Heo committed
422
	rq->cmd_flags |= REQ_FLUSH_SEQ;
423
	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
424
425
426
	if (q->mq_ops) {
		rq->end_io = mq_flush_data_end_io;

427
		spin_lock_irq(&fq->mq_flush_lock);
428
		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
429
		spin_unlock_irq(&fq->mq_flush_lock);
430
431
		return;
	}
432
433
	rq->end_io = flush_data_end_io;

434
	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
435
436
437
438
439
}

/**
 * blkdev_issue_flush - queue a flush
 * @bdev:	blockdev to issue flush for
440
 * @gfp_mask:	memory allocation flags (for bio_alloc)
441
442
443
444
445
 * @error_sector:	error sector
 *
 * Description:
 *    Issue a flush for the block device in question. Caller can supply
 *    room for storing the error offset in case of a flush error, if they
446
447
 *    wish to. If WAIT flag is not passed then caller may check only what
 *    request was pushed in some internal queue for later handling.
448
 */
449
int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
450
		sector_t *error_sector)
451
452
453
{
	struct request_queue *q;
	struct bio *bio;
454
	int ret = 0;
455
456
457
458
459
460
461
462

	if (bdev->bd_disk == NULL)
		return -ENXIO;

	q = bdev_get_queue(bdev);
	if (!q)
		return -ENXIO;

463
464
465
466
	/*
	 * some block devices may not have their queue correctly set up here
	 * (e.g. loop device without a backing file) and so issuing a flush
	 * here will panic. Ensure there is a request function before issuing
467
	 * the flush.
468
469
470
471
	 */
	if (!q->make_request_fn)
		return -ENXIO;

472
	bio = bio_alloc(gfp_mask, 0);
473
474
	bio->bi_bdev = bdev;

475
	ret = submit_bio_wait(WRITE_FLUSH, bio);
476
477
478
479
480
481
482

	/*
	 * The driver must store the error location in ->bi_sector, if
	 * it supports it. For non-stacked drivers, this should be
	 * copied from blk_rq_pos(rq).
	 */
	if (error_sector)
483
		*error_sector = bio->bi_iter.bi_sector;
484
485
486
487
488

	bio_put(bio);
	return ret;
}
EXPORT_SYMBOL(blkdev_issue_flush);
489

490
491
struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
		int node, int cmd_size)
492
{
493
494
	struct blk_flush_queue *fq;
	int rq_sz = sizeof(struct request);
495

496
	fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
497
498
	if (!fq)
		goto fail;
499

500
501
	if (q->mq_ops) {
		spin_lock_init(&fq->mq_flush_lock);
502
		rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
503
504
	}

505
	fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
506
507
508
509
510
511
512
513
514
515
516
517
518
	if (!fq->flush_rq)
		goto fail_rq;

	INIT_LIST_HEAD(&fq->flush_queue[0]);
	INIT_LIST_HEAD(&fq->flush_queue[1]);
	INIT_LIST_HEAD(&fq->flush_data_in_flight);

	return fq;

 fail_rq:
	kfree(fq);
 fail:
	return NULL;
519
}
520

521
void blk_free_flush_queue(struct blk_flush_queue *fq)
522
{
523
524
525
	/* bio based request queue hasn't flush queue */
	if (!fq)
		return;
526

527
528
529
	kfree(fq->flush_rq);
	kfree(fq);
}