Commit 0222e657 authored by Jeff Mahoney's avatar Jeff Mahoney Committed by Linus Torvalds

reiserfs: strip trailing whitespace

This patch strips trailing whitespace from the reiserfs code.
Signed-off-by: default avatarJeff Mahoney <jeffm@suse.com>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 3cd6dbe6
[LICENSING]
[LICENSING]
ReiserFS is hereby licensed under the GNU General
Public License version 2.
......@@ -31,7 +31,7 @@ the GPL as not allowing those additional licensing options, you read
it wrongly, and Richard Stallman agrees with me, when carefully read
you can see that those restrictions on additional terms do not apply
to the owner of the copyright, and my interpretation of this shall
govern for this license.
govern for this license.
Finally, nothing in this license shall be interpreted to allow you to
fail to fairly credit me, or to remove my credits, without my
......
......@@ -76,21 +76,21 @@ inline void do_balance_mark_leaf_dirty(struct tree_balance *tb,
#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
/* summary:
/* summary:
if deleting something ( tb->insert_size[0] < 0 )
return(balance_leaf_when_delete()); (flag d handled here)
else
if lnum is larger than 0 we put items into the left node
if rnum is larger than 0 we put items into the right node
if snum1 is larger than 0 we put items into the new node s1
if snum2 is larger than 0 we put items into the new node s2
if snum2 is larger than 0 we put items into the new node s2
Note that all *num* count new items being created.
It would be easier to read balance_leaf() if each of these summary
lines was a separate procedure rather than being inlined. I think
that there are many passages here and in balance_leaf_when_delete() in
which two calls to one procedure can replace two passages, and it
might save cache space and improve software maintenance costs to do so.
might save cache space and improve software maintenance costs to do so.
Vladimir made the perceptive comment that we should offload most of
the decision making in this function into fix_nodes/check_balance, and
......@@ -288,15 +288,15 @@ static int balance_leaf(struct tree_balance *tb, struct item_head *ih, /* item h
)
{
struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
int item_pos = PATH_LAST_POSITION(tb->tb_path); /* index into the array of item headers in S[0]
int item_pos = PATH_LAST_POSITION(tb->tb_path); /* index into the array of item headers in S[0]
of the affected item */
struct buffer_info bi;
struct buffer_head *S_new[2]; /* new nodes allocated to hold what could not fit into S */
int snum[2]; /* number of items that will be placed
into S_new (includes partially shifted
items) */
int sbytes[2]; /* if an item is partially shifted into S_new then
if it is a directory item
int sbytes[2]; /* if an item is partially shifted into S_new then
if it is a directory item
it is the number of entries from the item that are shifted into S_new
else
it is the number of bytes from the item that are shifted into S_new
......@@ -1983,7 +1983,7 @@ static inline void do_balance_starts(struct tree_balance *tb)
/* store_print_tb (tb); */
/* do not delete, just comment it out */
/* print_tb(flag, PATH_LAST_POSITION(tb->tb_path), tb->tb_path->pos_in_item, tb,
/* print_tb(flag, PATH_LAST_POSITION(tb->tb_path), tb->tb_path->pos_in_item, tb,
"check");*/
RFALSE(check_before_balancing(tb), "PAP-12340: locked buffers in TB");
#ifdef CONFIG_REISERFS_CHECK
......
......@@ -20,14 +20,14 @@
** insertion/balancing, for files that are written in one write.
** It avoids unnecessary tail packings (balances) for files that are written in
** multiple writes and are small enough to have tails.
**
**
** file_release is called by the VFS layer when the file is closed. If
** this is the last open file descriptor, and the file
** small enough to have a tail, and the tail is currently in an
** unformatted node, the tail is converted back into a direct item.
**
**
** We use reiserfs_truncate_file to pack the tail, since it already has
** all the conditions coded.
** all the conditions coded.
*/
static int reiserfs_file_release(struct inode *inode, struct file *filp)
{
......@@ -223,7 +223,7 @@ int reiserfs_commit_page(struct inode *inode, struct page *page,
}
/* Write @count bytes at position @ppos in a file indicated by @file
from the buffer @buf.
from the buffer @buf.
generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
......
......@@ -30,8 +30,8 @@
** get_direct_parent
** get_neighbors
** fix_nodes
**
**
**
**
**/
#include <linux/time.h>
......@@ -377,9 +377,9 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
int needed_nodes;
int start_item, /* position of item we start filling node from */
end_item, /* position of item we finish filling node by */
start_bytes, /* number of first bytes (entries for directory) of start_item-th item
start_bytes, /* number of first bytes (entries for directory) of start_item-th item
we do not include into node that is being filled */
end_bytes; /* number of last bytes (entries for directory) of end_item-th item
end_bytes; /* number of last bytes (entries for directory) of end_item-th item
we do node include into node that is being filled */
int split_item_positions[2]; /* these are positions in virtual item of
items, that are split between S[0] and
......@@ -569,7 +569,7 @@ extern struct tree_balance *cur_tb;
/* Set parameters for balancing.
* Performs write of results of analysis of balancing into structure tb,
* where it will later be used by the functions that actually do the balancing.
* where it will later be used by the functions that actually do the balancing.
* Parameters:
* tb tree_balance structure;
* h current level of the node;
......@@ -1204,7 +1204,7 @@ static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
* h current level of the node;
* inum item number in S[h];
* mode i - insert, p - paste;
* Returns: 1 - schedule occurred;
* Returns: 1 - schedule occurred;
* 0 - balancing for higher levels needed;
* -1 - no balancing for higher levels needed;
* -2 - no disk space.
......@@ -1239,7 +1239,7 @@ static int ip_check_balance(struct tree_balance *tb, int h)
/* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
where 4th parameter is s1bytes and 5th - s2bytes
*/
short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
0,1 - do not shift and do not shift but bottle
2 - shift only whole item to left
3 - shift to left and bottle as much as possible
......@@ -1288,7 +1288,7 @@ static int ip_check_balance(struct tree_balance *tb, int h)
create_virtual_node(tb, h);
/*
/*
determine maximal number of items we can shift to the left neighbor (in tb structure)
and the maximal number of bytes that can flow to the left neighbor
from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
......@@ -1349,13 +1349,13 @@ static int ip_check_balance(struct tree_balance *tb, int h)
{
int lpar, rpar, nset, lset, rset, lrset;
/*
/*
* regular overflowing of the node
*/
/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
/* get_num_ver works in 2 modes (FLOW & NO_FLOW)
lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
nset, lset, rset, lrset - shows, whether flowing items give better packing
nset, lset, rset, lrset - shows, whether flowing items give better packing
*/
#define FLOW 1
#define NO_FLOW 0 /* do not any splitting */
......@@ -1545,7 +1545,7 @@ static int ip_check_balance(struct tree_balance *tb, int h)
* h current level of the node;
* inum item number in S[h];
* mode i - insert, p - paste;
* Returns: 1 - schedule occurred;
* Returns: 1 - schedule occurred;
* 0 - balancing for higher levels needed;
* -1 - no balancing for higher levels needed;
* -2 - no disk space.
......@@ -1728,7 +1728,7 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
* h current level of the node;
* inum item number in S[h];
* mode i - insert, p - paste;
* Returns: 1 - schedule occurred;
* Returns: 1 - schedule occurred;
* 0 - balancing for higher levels needed;
* -1 - no balancing for higher levels needed;
* -2 - no disk space.
......@@ -1822,7 +1822,7 @@ static int dc_check_balance_leaf(struct tree_balance *tb, int h)
* h current level of the node;
* inum item number in S[h];
* mode d - delete, c - cut.
* Returns: 1 - schedule occurred;
* Returns: 1 - schedule occurred;
* 0 - balancing for higher levels needed;
* -1 - no balancing for higher levels needed;
* -2 - no disk space.
......@@ -1851,7 +1851,7 @@ static int dc_check_balance(struct tree_balance *tb, int h)
* h current level of the node;
* inum item number in S[h];
* mode i - insert, p - paste, d - delete, c - cut.
* Returns: 1 - schedule occurred;
* Returns: 1 - schedule occurred;
* 0 - balancing for higher levels needed;
* -1 - no balancing for higher levels needed;
* -2 - no disk space.
......@@ -2296,15 +2296,15 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
* analyze what and where should be moved;
* get sufficient number of new nodes;
* Balancing will start only after all resources will be collected at a time.
*
*
* When ported to SMP kernels, only at the last moment after all needed nodes
* are collected in cache, will the resources be locked using the usual
* textbook ordered lock acquisition algorithms. Note that ensuring that
* this code neither write locks what it does not need to write lock nor locks out of order
* will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
*
*
* fix is meant in the sense of render unchanging
*
*
* Latency might be improved by first gathering a list of what buffers are needed
* and then getting as many of them in parallel as possible? -Hans
*
......@@ -2316,7 +2316,7 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
* ins_ih & ins_sd are used when inserting
* Returns: 1 - schedule occurred while the function worked;
* 0 - schedule didn't occur while the function worked;
* -1 - if no_disk_space
* -1 - if no_disk_space
*/
int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted
......
......@@ -7,7 +7,7 @@
* (see Applied Cryptography, 2nd edition, p448).
*
* Jeremy Fitzhardinge <jeremy@zip.com.au> 1998
*
*
* Jeremy has agreed to the contents of reiserfs/README. -Hans
* Yura's function is added (04/07/2000)
*/
......
......@@ -278,7 +278,7 @@ static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
* last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
* last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
*/
static void internal_copy_pointers_items(struct buffer_info *dest_bi,
struct buffer_head *src,
......@@ -385,7 +385,7 @@ static void internal_move_pointers_items(struct buffer_info *dest_bi,
if (last_first == FIRST_TO_LAST) { /* shift_left occurs */
first_pointer = 0;
first_item = 0;
/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
for key - with first_item */
internal_delete_pointers_items(src_bi, first_pointer,
first_item, cpy_num - del_par);
......@@ -453,7 +453,7 @@ static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_b
}
}
/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
* Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
* Replace d_key'th key in buffer cfl.
* Delete pointer_amount items and node pointers from buffer src.
......@@ -518,7 +518,7 @@ static void internal_shift1_left(struct tree_balance *tb,
/* internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
}
/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
* Copy n node pointers and n - 1 items from buffer src to buffer dest.
* Replace d_key'th key in buffer cfr.
* Delete n items and node pointers from buffer src.
......@@ -749,7 +749,7 @@ int balance_internal(struct tree_balance *tb, /* tree_balance structure
this means that new pointers and items must be inserted AFTER *
child_pos
}
else
else
{
it is the position of the leftmost pointer that must be deleted (together with
its corresponding key to the left of the pointer)
......
......@@ -52,7 +52,7 @@ void reiserfs_delete_inode(struct inode *inode)
/* Do quota update inside a transaction for journaled quotas. We must do that
* after delete_object so that quota updates go into the same transaction as
* stat data deletion */
if (!err)
if (!err)
DQUOT_FREE_INODE(inode);
if (journal_end(&th, inode->i_sb, jbegin_count))
......@@ -363,7 +363,7 @@ static int _get_block_create_0(struct inode *inode, sector_t block,
}
/* make sure we don't read more bytes than actually exist in
** the file. This can happen in odd cases where i_size isn't
** correct, and when direct item padding results in a few
** correct, and when direct item padding results in a few
** extra bytes at the end of the direct item
*/
if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
......@@ -438,15 +438,15 @@ static int reiserfs_bmap(struct inode *inode, sector_t block,
** -ENOENT instead of a valid buffer. block_prepare_write expects to
** be able to do i/o on the buffers returned, unless an error value
** is also returned.
**
**
** So, this allows block_prepare_write to be used for reading a single block
** in a page. Where it does not produce a valid page for holes, or past the
** end of the file. This turns out to be exactly what we need for reading
** tails for conversion.
**
** The point of the wrapper is forcing a certain value for create, even
** though the VFS layer is calling this function with create==1. If you
** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
** though the VFS layer is calling this function with create==1. If you
** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
** don't use this function.
*/
static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
......@@ -602,7 +602,7 @@ int reiserfs_get_block(struct inode *inode, sector_t block,
int done;
int fs_gen;
struct reiserfs_transaction_handle *th = NULL;
/* space reserved in transaction batch:
/* space reserved in transaction batch:
. 3 balancings in direct->indirect conversion
. 1 block involved into reiserfs_update_sd()
XXX in practically impossible worst case direct2indirect()
......@@ -754,7 +754,7 @@ int reiserfs_get_block(struct inode *inode, sector_t block,
reiserfs_write_unlock(inode->i_sb);
/* the item was found, so new blocks were not added to the file
** there is no need to make sure the inode is updated with this
** there is no need to make sure the inode is updated with this
** transaction
*/
return retval;
......@@ -986,7 +986,7 @@ int reiserfs_get_block(struct inode *inode, sector_t block,
/* this loop could log more blocks than we had originally asked
** for. So, we have to allow the transaction to end if it is
** too big or too full. Update the inode so things are
** too big or too full. Update the inode so things are
** consistent if we crash before the function returns
**
** release the path so that anybody waiting on the path before
......@@ -997,7 +997,7 @@ int reiserfs_get_block(struct inode *inode, sector_t block,
if (retval)
goto failure;
}
/* inserting indirect pointers for a hole can take a
/* inserting indirect pointers for a hole can take a
** long time. reschedule if needed
*/
cond_resched();
......@@ -1444,7 +1444,7 @@ void reiserfs_read_locked_inode(struct inode *inode,
update sd on unlink all that is required is to check for nlink
here. This bug was first found by Sizif when debugging
SquidNG/Butterfly, forgotten, and found again after Philippe
Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
More logical fix would require changes in fs/inode.c:iput() to
remove inode from hash-table _after_ fs cleaned disk stuff up and
......@@ -1619,7 +1619,7 @@ int reiserfs_write_inode(struct inode *inode, int do_sync)
if (inode->i_sb->s_flags & MS_RDONLY)
return -EROFS;
/* memory pressure can sometimes initiate write_inode calls with sync == 1,
** these cases are just when the system needs ram, not when the
** these cases are just when the system needs ram, not when the
** inode needs to reach disk for safety, and they can safely be
** ignored because the altered inode has already been logged.
*/
......@@ -1736,7 +1736,7 @@ static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct i
/* inserts the stat data into the tree, and then calls
reiserfs_new_directory (to insert ".", ".." item if new object is
directory) or reiserfs_new_symlink (to insert symlink body if new
object is symlink) or nothing (if new object is regular file)
object is symlink) or nothing (if new object is regular file)
NOTE! uid and gid must already be set in the inode. If we return
non-zero due to an error, we have to drop the quota previously allocated
......@@ -1744,7 +1744,7 @@ static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct i
if we return non-zero, we also end the transaction. */
int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
struct inode *dir, int mode, const char *symname,
/* 0 for regular, EMTRY_DIR_SIZE for dirs,
/* 0 for regular, EMTRY_DIR_SIZE for dirs,
strlen (symname) for symlinks) */
loff_t i_size, struct dentry *dentry,
struct inode *inode,
......@@ -1794,7 +1794,7 @@ int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
goto out_bad_inode;
}
if (old_format_only(sb))
/* not a perfect generation count, as object ids can be reused, but
/* not a perfect generation count, as object ids can be reused, but
** this is as good as reiserfs can do right now.
** note that the private part of inode isn't filled in yet, we have
** to use the directory.
......@@ -2081,7 +2081,7 @@ int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
if (p_s_inode->i_size > 0) {
if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
// -ENOENT means we truncated past the end of the file,
// -ENOENT means we truncated past the end of the file,
// and get_block_create_0 could not find a block to read in,
// which is ok.
if (error != -ENOENT)
......@@ -2093,11 +2093,11 @@ int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
}
}
/* so, if page != NULL, we have a buffer head for the offset at
** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
** then we have an unformatted node. Otherwise, we have a direct item,
** and no zeroing is required on disk. We zero after the truncate,
** because the truncate might pack the item anyway
/* so, if page != NULL, we have a buffer head for the offset at
** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
** then we have an unformatted node. Otherwise, we have a direct item,
** and no zeroing is required on disk. We zero after the truncate,
** because the truncate might pack the item anyway
** (it will unmap bh if it packs).
*/
/* it is enough to reserve space in transaction for 2 balancings:
......@@ -2306,8 +2306,8 @@ static int map_block_for_writepage(struct inode *inode,
return retval;
}
/*
* mason@suse.com: updated in 2.5.54 to follow the same general io
/*
* mason@suse.com: updated in 2.5.54 to follow the same general io
* start/recovery path as __block_write_full_page, along with special
* code to handle reiserfs tails.
*/
......@@ -2447,7 +2447,7 @@ static int reiserfs_write_full_page(struct page *page,
unlock_page(page);
/*
* since any buffer might be the only dirty buffer on the page,
* since any buffer might be the only dirty buffer on the page,
* the first submit_bh can bring the page out of writeback.
* be careful with the buffers.
*/
......@@ -2466,8 +2466,8 @@ static int reiserfs_write_full_page(struct page *page,
if (nr == 0) {
/*
* if this page only had a direct item, it is very possible for
* no io to be required without there being an error. Or,
* someone else could have locked them and sent them down the
* no io to be required without there being an error. Or,
* someone else could have locked them and sent them down the
* pipe without locking the page
*/
bh = head;
......@@ -2486,7 +2486,7 @@ static int reiserfs_write_full_page(struct page *page,
fail:
/* catches various errors, we need to make sure any valid dirty blocks
* get to the media. The page is currently locked and not marked for
* get to the media. The page is currently locked and not marked for
* writeback
*/
ClearPageUptodate(page);
......
......@@ -189,7 +189,7 @@ int reiserfs_unpack(struct inode *inode, struct file *filp)
}
/* we unpack by finding the page with the tail, and calling
** reiserfs_prepare_write on that page. This will force a
** reiserfs_prepare_write on that page. This will force a
** reiserfs_get_block to unpack the tail for us.
*/
index = inode->i_size >> PAGE_CACHE_SHIFT;
......
/*
** Write ahead logging implementation copyright Chris Mason 2000
**
** The background commits make this code very interelated, and
** The background commits make this code very interelated, and
** overly complex. I need to rethink things a bit....The major players:
**
** journal_begin -- call with the number of blocks you expect to log.
** journal_begin -- call with the number of blocks you expect to log.
** If the current transaction is too
** old, it will block until the current transaction is
** old, it will block until the current transaction is
** finished, and then start a new one.
** Usually, your transaction will get joined in with
** Usually, your transaction will get joined in with
** previous ones for speed.
**
** journal_join -- same as journal_begin, but won't block on the current
** journal_join -- same as journal_begin, but won't block on the current
** transaction regardless of age. Don't ever call
** this. Ever. There are only two places it should be
** this. Ever. There are only two places it should be
** called from, and they are both inside this file.
**
** journal_mark_dirty -- adds blocks into this transaction. clears any flags
** journal_mark_dirty -- adds blocks into this transaction. clears any flags
** that might make them get sent to disk
** and then marks them BH_JDirty. Puts the buffer head
** into the current transaction hash.
** and then marks them BH_JDirty. Puts the buffer head
** into the current transaction hash.
**
** journal_end -- if the current transaction is batchable, it does nothing
** otherwise, it could do an async/synchronous commit, or
** a full flush of all log and real blocks in the
** a full flush of all log and real blocks in the
** transaction.
**
** flush_old_commits -- if the current transaction is too old, it is ended and
** commit blocks are sent to disk. Forces commit blocks
** to disk for all backgrounded commits that have been
** flush_old_commits -- if the current transaction is too old, it is ended and
** commit blocks are sent to disk. Forces commit blocks
** to disk for all backgrounded commits that have been
** around too long.
** -- Note, if you call this as an immediate flush from
** -- Note, if you call this as an immediate flush from
** from within kupdate, it will ignore the immediate flag
*/
......@@ -212,7 +212,7 @@ static void allocate_bitmap_nodes(struct super_block *p_s_sb)
list_add(&bn->list, &journal->j_bitmap_nodes);
journal->j_free_bitmap_nodes++;
} else {
break; // this is ok, we'll try again when more are needed
break; /* this is ok, we'll try again when more are needed */
}
}
}
......@@ -283,7 +283,7 @@ static int free_bitmap_nodes(struct super_block *p_s_sb)
}
/*
** get memory for JOURNAL_NUM_BITMAPS worth of bitmaps.
** get memory for JOURNAL_NUM_BITMAPS worth of bitmaps.
** jb_array is the array to be filled in.
*/
int reiserfs_allocate_list_bitmaps(struct super_block *p_s_sb,
......@@ -315,7 +315,7 @@ int reiserfs_allocate_list_bitmaps(struct super_block *p_s_sb,
}
/*
** find an available list bitmap. If you can't find one, flush a commit list
** find an available list bitmap. If you can't find one, flush a commit list
** and try again
*/
static struct reiserfs_list_bitmap *get_list_bitmap(struct super_block *p_s_sb,
......@@ -348,7 +348,7 @@ static struct reiserfs_list_bitmap *get_list_bitmap(struct super_block *p_s_sb,
return jb;
}
/*
/*
** allocates a new chunk of X nodes, and links them all together as a list.
** Uses the cnode->next and cnode->prev pointers
** returns NULL on failure
......@@ -376,7 +376,7 @@ static struct reiserfs_journal_cnode *allocate_cnodes(int num_cnodes)
}
/*
** pulls a cnode off the free list, or returns NULL on failure
** pulls a cnode off the free list, or returns NULL on failure
*/
static struct reiserfs_journal_cnode *get_cnode(struct super_block *p_s_sb)
{
......@@ -403,7 +403,7 @@ static struct reiserfs_journal_cnode *get_cnode(struct super_block *p_s_sb)
}
/*
** returns a cnode to the free list
** returns a cnode to the free list
*/
static void free_cnode(struct super_block *p_s_sb,
struct reiserfs_journal_cnode *cn)
......@@ -1192,8 +1192,8 @@ static int flush_commit_list(struct super_block *s,
}
/*
** flush_journal_list frequently needs to find a newer transaction for a given block. This does that, or
** returns NULL if it can't find anything
** flush_journal_list frequently needs to find a newer transaction for a given block. This does that, or
** returns NULL if it can't find anything
*/
static struct reiserfs_journal_list *find_newer_jl_for_cn(struct
reiserfs_journal_cnode
......@@ -1335,8 +1335,8 @@ static int update_journal_header_block(struct super_block *p_s_sb,
return _update_journal_header_block(p_s_sb, offset, trans_id);
}
/*
** flush any and all journal lists older than you are
/*
** flush any and all journal lists older than you are
** can only be called from flush_journal_list
*/
static int flush_older_journal_lists(struct super_block *p_s_sb,
......@@ -1382,8 +1382,8 @@ static void del_from_work_list(struct super_block *s,
** always set flushall to 1, unless you are calling from inside
** flush_journal_list
**
** IMPORTANT. This can only be called while there are no journal writers,
** and the journal is locked. That means it can only be called from
** IMPORTANT. This can only be called while there are no journal writers,
** and the journal is locked. That means it can only be called from
** do_journal_end, or by journal_release
*/
static int flush_journal_list(struct super_block *s,
......@@ -1429,7 +1429,7 @@ static int flush_journal_list(struct super_block *s,
goto flush_older_and_return;
}
/* start by putting the commit list on disk. This will also flush
/* start by putting the commit list on disk. This will also flush
** the commit lists of any olders transactions
*/
flush_commit_list(s, jl, 1);
......@@ -1444,8 +1444,8 @@ static int flush_journal_list(struct super_block *s,
goto flush_older_and_return;
}
/* loop through each cnode, see if we need to write it,
** or wait on a more recent transaction, or just ignore it
/* loop through each cnode, see if we need to write it,
** or wait on a more recent transaction, or just ignore it
*/
if (atomic_read(&(journal->j_wcount)) != 0) {
reiserfs_panic(s, "journal-844", "journal list is flushing, "
......@@ -1473,8 +1473,8 @@ static int flush_journal_list(struct super_block *s,
if (!pjl && cn->bh) {
saved_bh = cn->bh;
/* we do this to make sure nobody releases the buffer while
** we are working with it
/* we do this to make sure nobody releases the buffer while
** we are working with it
*/
get_bh(saved_bh);
......@@ -1497,8 +1497,8 @@ static int flush_journal_list(struct super_block *s,
goto free_cnode;
}
/* bh == NULL when the block got to disk on its own, OR,
** the block got freed in a future transaction
/* bh == NULL when the block got to disk on its own, OR,
** the block got freed in a future transaction
*/
if (saved_bh == NULL) {
goto free_cnode;
......@@ -1586,7 +1586,7 @@ static int flush_journal_list(struct super_block *s,
__func__);
flush_older_and_return:
/* before we can update the journal header block, we _must_ flush all
/* before we can update the journal header block, we _must_ flush all
** real blocks from all older transactions to disk. This is because
** once the header block is updated, this transaction will not be
** replayed after a crash
......@@ -1596,7 +1596,7 @@ static int flush_journal_list(struct super_block *s,
}
err = journal->j_errno;