dm-thin.c 109 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/sort.h>
22
#include <linux/rbtree.h>
23
24
25
26
27
28

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
29
#define ENDIO_HOOK_POOL_SIZE 1024
30
#define MAPPING_POOL_SIZE 1024
31
#define COMMIT_PERIOD HZ
32
33
34
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35

36
37
38
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
71
 * including all devices that share this block.  (see dm_deferred_set code)
72
73
74
75
76
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
77
 * (process_prepared_mapping).  This act of inserting breaks some
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
114
115
116
117
118
119
120
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
121
{
Joe Thornber's avatar
Joe Thornber committed
122
	key->virtual = (ls == VIRTUAL);
123
	key->dev = dm_thin_dev_id(td);
124
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
125
126
127
128
129
130
131
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
132
133
134
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
135
			      struct dm_cell_key *key)
136
{
Joe Thornber's avatar
Joe Thornber committed
137
	build_key(td, VIRTUAL, b, b + 1llu, key);
138
139
140
141
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

189
190
191
192
193
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
194
struct dm_thin_new_mapping;
195

196
/*
197
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
198
199
200
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
201
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
202
203
204
205
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

206
struct pool_features {
207
208
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
209
210
211
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
212
	bool error_if_no_space:1;
213
214
};

215
216
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
217
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
218
219
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

220
221
#define CELL_SORT_ARRAY_SIZE 8192

222
223
224
225
226
227
228
229
230
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
231
	uint32_t sectors_per_block;
232
	int sectors_per_block_shift;
233

234
	struct pool_features pf;
235
	bool low_water_triggered:1;	/* A dm event has been sent */
236
	bool suspended:1;
237

238
	struct dm_bio_prison *prison;
239
240
241
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
242
	struct throttle throttle;
243
	struct work_struct worker;
244
	struct delayed_work waker;
245
	struct delayed_work no_space_timeout;
246

247
	unsigned long last_commit_jiffies;
248
	unsigned ref_count;
249
250
251
252

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
253
	struct list_head prepared_discards;
254
	struct list_head active_thins;
255

256
257
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
258

Mike Snitzer's avatar
Mike Snitzer committed
259
	struct dm_thin_new_mapping *next_mapping;
260
	mempool_t *mapping_pool;
261
262
263
264

	process_bio_fn process_bio;
	process_bio_fn process_discard;

265
266
267
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

268
269
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
270
271

	struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
272
273
};

274
static enum pool_mode get_pool_mode(struct pool *pool);
275
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
276

277
278
279
280
281
282
283
284
285
286
287
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
288
289
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
290
291
292
293
294
295
};

/*
 * Target context for a thin.
 */
struct thin_c {
296
	struct list_head list;
297
	struct dm_dev *pool_dev;
298
	struct dm_dev *origin_dev;
299
	sector_t origin_size;
300
301
302
303
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
304
305
	struct mapped_device *thin_md;

306
	bool requeue_mode:1;
307
	spinlock_t lock;
308
	struct list_head deferred_cells;
309
310
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
311
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
312
313
314
315
316
317
318

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
319
320
321
322
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/**
 * __blkdev_issue_discard_async - queue a discard with async completion
 * @bdev:	blockdev to issue discard for
 * @sector:	start sector
 * @nr_sects:	number of sectors to discard
 * @gfp_mask:	memory allocation flags (for bio_alloc)
 * @flags:	BLKDEV_IFL_* flags to control behaviour
 * @parent_bio: parent discard bio that all sub discards get chained to
 *
 * Description:
 *    Asynchronously issue a discard request for the sectors in question.
 *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
 *    that is being kept local to DM thinp until the block changes to allow
 *    late bio splitting land upstream.
 */
static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
					struct bio *parent_bio)
{
	struct request_queue *q = bdev_get_queue(bdev);
	int type = REQ_WRITE | REQ_DISCARD;
	unsigned int max_discard_sectors, granularity;
	int alignment;
	struct bio *bio;
	int ret = 0;
	struct blk_plug plug;

	if (!q)
		return -ENXIO;

	if (!blk_queue_discard(q))
		return -EOPNOTSUPP;

	/* Zero-sector (unknown) and one-sector granularities are the same.  */
	granularity = max(q->limits.discard_granularity >> 9, 1U);
	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;

	/*
	 * Ensure that max_discard_sectors is of the proper
	 * granularity, so that requests stay aligned after a split.
	 */
	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
	max_discard_sectors -= max_discard_sectors % granularity;
	if (unlikely(!max_discard_sectors)) {
		/* Avoid infinite loop below. Being cautious never hurts. */
		return -EOPNOTSUPP;
	}

	if (flags & BLKDEV_DISCARD_SECURE) {
		if (!blk_queue_secdiscard(q))
			return -EOPNOTSUPP;
		type |= REQ_SECURE;
	}

	blk_start_plug(&plug);
	while (nr_sects) {
		unsigned int req_sects;
		sector_t end_sect, tmp;

		/*
		 * Required bio_put occurs in bio_endio thanks to bio_chain below
		 */
		bio = bio_alloc(gfp_mask, 1);
		if (!bio) {
			ret = -ENOMEM;
			break;
		}

		req_sects = min_t(sector_t, nr_sects, max_discard_sectors);

		/*
		 * If splitting a request, and the next starting sector would be
		 * misaligned, stop the discard at the previous aligned sector.
		 */
		end_sect = sector + req_sects;
		tmp = end_sect;
		if (req_sects < nr_sects &&
		    sector_div(tmp, granularity) != alignment) {
			end_sect = end_sect - alignment;
			sector_div(end_sect, granularity);
			end_sect = end_sect * granularity + alignment;
			req_sects = end_sect - sector;
		}

		bio_chain(bio, parent_bio);

		bio->bi_iter.bi_sector = sector;
		bio->bi_bdev = bdev;

		bio->bi_iter.bi_size = req_sects << 9;
		nr_sects -= req_sects;
		sector = end_sect;

		submit_bio(type, bio);

		/*
		 * We can loop for a long time in here, if someone does
		 * full device discards (like mkfs). Be nice and allow
		 * us to schedule out to avoid softlocking if preempt
		 * is disabled.
		 */
		cond_resched();
	}
	blk_finish_plug(&plug);

	return ret;
}

static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
			 struct bio *parent_bio)
{
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);

	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
					    GFP_NOWAIT, 0, parent_bio);
}

/*----------------------------------------------------------------*/

455
456
457
458
459
460
461
462
463
464
465
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

497
498
499
500
501
502
503
504
505
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

506
507
508
509
510
511
512
513
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

514
515
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
516
{
517
	dm_cell_error(pool->prison, cell, error_code);
518
519
520
	dm_bio_prison_free_cell(pool->prison, cell);
}

521
522
523
524
525
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, -EIO);
}

526
527
528
529
530
531
532
533
534
535
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

536
537
/*----------------------------------------------------------------*/

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
598
struct dm_thin_endio_hook {
599
	struct thin_c *tc;
600
601
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
602
	struct dm_thin_new_mapping *overwrite_mapping;
603
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
604
	struct dm_bio_prison_cell *cell;
605
606
};

607
608
609
610
611
612
613
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
614
615
{
	struct bio *bio;
616
617
618
619
620
621
622

	while ((bio = bio_list_pop(bios)))
		bio_endio(bio, error);
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
623
	struct bio_list bios;
624
	unsigned long flags;
625
626

	bio_list_init(&bios);
627

628
	spin_lock_irqsave(&tc->lock, flags);
629
	__merge_bio_list(&bios, master);
630
	spin_unlock_irqrestore(&tc->lock, flags);
631

632
	error_bio_list(&bios, error);
633
634
}

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

652
653
static void requeue_io(struct thin_c *tc)
{
654
	struct bio_list bios;
655
	unsigned long flags;
656
657
658

	bio_list_init(&bios);

659
	spin_lock_irqsave(&tc->lock, flags);
660
661
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
662
	spin_unlock_irqrestore(&tc->lock, flags);
663

664
665
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
666
667
}

668
669
670
671
672
673
static void error_retry_list(struct pool *pool)
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
674
		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
675
676
677
	rcu_read_unlock();
}

678
679
680
681
682
683
684
685
686
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
687
	struct pool *pool = tc->pool;
688
	sector_t block_nr = bio->bi_iter.bi_sector;
689

690
691
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
692
	else
693
		(void) sector_div(block_nr, pool->sectors_per_block);
694
695

	return block_nr;
696
697
}

Joe Thornber's avatar
Joe Thornber committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

726
727
728
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
729
	sector_t bi_sector = bio->bi_iter.bi_sector;
730
731

	bio->bi_bdev = tc->pool_dev->bdev;
732
	if (block_size_is_power_of_two(pool))
733
734
735
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
736
	else
737
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
738
				 sector_div(bi_sector, pool->sectors_per_block);
739
740
}

741
742
743
744
745
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

746
747
748
749
750
751
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

752
753
754
755
756
757
758
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

759
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
760
761
762
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

763
static void issue(struct thin_c *tc, struct bio *bio)
764
765
766
767
{
	struct pool *pool = tc->pool;
	unsigned long flags;

768
769
770
771
772
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

773
	/*
774
775
776
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
777
	 */
778
779
780
781
782
783
784
785
786
787
788
789
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
790
791
}

792
793
794
795
796
797
798
799
800
801
802
803
804
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

805
806
807
808
809
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
810
struct dm_thin_new_mapping {
811
812
	struct list_head list;

813
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
814
	bool maybe_shared:1;
815

816
817
818
819
820
821
822
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

823
	int err;
824
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
825
	dm_block_t virt_begin, virt_end;
826
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
827
	struct dm_bio_prison_cell *cell;
828
829
830
831
832
833
834
835
836
837
838

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

839
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
840
841
842
{
	struct pool *pool = m->tc->pool;

843
	if (atomic_dec_and_test(&m->prepare_actions)) {
844
		list_add_tail(&m->list, &pool->prepared_mappings);
845
846
847
848
		wake_worker(pool);
	}
}

849
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
850
851
852
853
854
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
855
	__complete_mapping_preparation(m);
856
857
858
	spin_unlock_irqrestore(&pool->lock, flags);
}

859
860
861
862
863
864
865
866
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

867
868
static void overwrite_endio(struct bio *bio, int err)
{
869
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
870
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
871

872
873
	bio->bi_end_io = m->saved_bi_end_io;

874
	m->err = err;
875
	complete_mapping_preparation(m);
876
877
878
879
880
881
882
883
884
885
886
887
888
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
889
890
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
891
 */
892
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
893
894
895
896
{
	struct pool *pool = tc->pool;
	unsigned long flags;

897
898
899
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
900
901
902
903

	wake_worker(pool);
}

904
905
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

906
907
908
909
910
911
912
913
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
914
{
915
	struct remap_info *info = context;
916
917
	struct bio *bio;

918
	while ((bio = bio_list_pop(&cell->bios))) {
919
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
920
			bio_list_add(&info->defer_bios, bio);
921
		else {
922
923
924
925
926
927
928
929
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
930
931
932
933
		}
	}
}

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

960
961
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
962
	cell_error(m->tc->pool, m->cell);
963
964
965
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
966

Mike Snitzer's avatar
Mike Snitzer committed
967
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
968
969
{
	struct thin_c *tc = m->tc;
970
	struct pool *pool = tc->pool;
971
	struct bio *bio = m->bio;
972
973
974
	int r;

	if (m->err) {
975
		cell_error(pool, m->cell);
976
		goto out;
977
978
979
980
981
982
983
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
984
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
985
	if (r) {
986
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
987
		cell_error(pool, m->cell);
988
		goto out;
989
990
991
992
993
994
995
996
997
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
998
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
999
		bio_endio(bio, 0);
1000
1001
1002
1003
1004
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
1005

1006
out:
1007
	list_del(&m->list);
1008
	mempool_free(m, pool->mapping_pool);
1009
1010
}

Joe Thornber's avatar
Joe Thornber committed
1011
1012
1013
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
1014
1015
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1016
1017
1018
1019
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
1020

Joe Thornber's avatar
Joe Thornber committed
1021
1022
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
1023
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
	bio_endio(m->bio, 0);
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
		bio_endio(m->bio, 0);

1045
	cell_defer_no_holder(tc, m->cell);
1046
1047
1048
	mempool_free(m, tc->pool->mapping_pool);
}

Joe Thornber's avatar
Joe Thornber committed
1049
static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1050
{
Joe Thornber's avatar
Joe Thornber committed
1051
1052
1053
1054
1055
1056
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
	int r;
	bool used = true;
1057
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1058
1059
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
Joe Thornber's avatar
Joe Thornber committed
1060

Joe Thornber's avatar
Joe Thornber committed
1061
1062
1063
1064
1065
1066
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
				return r;
1067

Joe Thornber's avatar
Joe Thornber committed
1068
1069
			if (!used)
				break;
1070
		}
Joe Thornber's avatar
Joe Thornber committed
1071

Joe Thornber's avatar
Joe Thornber committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
				return r;

			if (used)
				break;
		}

		r = issue_discard(tc, b, e, m->bio);
		if (r)
			return r;

		b = e;
	}

	return 0;
Joe Thornber's avatar
Joe Thornber committed
1093
1094
}

Joe Thornber's avatar
Joe Thornber committed
1095
static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1096
1097
1098
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1099
	struct pool *pool = tc->pool;
1100

Joe Thornber's avatar
Joe Thornber committed
1101
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1102
	if (r)
Joe Thornber's avatar
Joe Thornber committed
1103
1104
1105
1106
1107
1108
		metadata_operation_failed(pool, "dm_thin_remove_range", r);

	else if (m->maybe_shared)
		r = passdown_double_checking_shared_status(m);
	else
		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1109

Joe Thornber's avatar
Joe Thornber committed
1110
1111
1112
1113
1114
1115
1116
	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
	bio_endio(m->bio, r);
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1117
1118
}

Joe Thornber's avatar
Joe Thornber committed
1119
static void process_prepared(struct pool *pool, struct list_head *head,
1120
			     process_mapping_fn *fn)
1121
1122
1123
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1124
	struct dm_thin_new_mapping *m, *tmp;
1125
1126
1127

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1128
	list_splice_init(head, &maps);
1129
1130
1131
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1132
		(*fn)(m);
1133
1134
1135
1136
1137
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1138
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1139
{
1140
1141
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1142
1143
1144
1145
1146
1147
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1167
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1168
{
1169
	struct dm_thin_new_mapping *m = pool->next_mapping;
1170
1171
1172

	BUG_ON(!pool->next_mapping);

1173
1174
1175
1176
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1177
1178
	pool->next_mapping = NULL;

1179
	return m;
1180
1181
}

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1199
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1200
				      dm_block_t data_begin,
1201
1202
1203
1204
1205
1206
1207
1208
1209
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1210
	remap_and_issue(tc, bio, data_begin);
1211
1212
}

1213
1214
1215
/*
 * A partial copy also needs to zero the uncopied region.
 */
1216
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1217
1218
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1219
1220
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1221
1222
1223
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1224
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1225
1226

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1227
1228
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1229
1230
1231
	m->data_block = data_dest;
	m->cell = cell;

1232
1233
1234
1235
1236
1237
1238
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1239
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1240
		complete_mapping_preparation(m); /* already quiesced */
1241
1242
1243
1244
1245
1246
1247

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1248
1249
1250
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1251
1252
		struct dm_io_region from, to;

1253
		from.bdev = origin->bdev;
1254
		from.sector = data_origin * pool->sectors_per_block;
1255
		from.count = len;
1256
1257
1258

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1259
		to.count = len;
1260
1261
1262
1263

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1264
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1283
1284
		}
	}
1285
1286

	complete_mapping_preparation(m); /* drop our ref */
1287
1288
}

1289
1290
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1291
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1292
1293
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1294
1295
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1296
1297
}

1298
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1299
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1300
1301
1302
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1303
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1304

1305
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1306
	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1307
1308
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1309
1310
1311
1312
1313
1314
1315
1316
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1317
1318
1319
1320
1321
1322
1323
	if (pool->pf.zero_new_blocks) {
		if (io_overwrites_block(pool, bio))
			remap_and_issue_overwrite(tc, bio, data_block, m);
		else
			ll_zero(tc, m, data_block * pool->sectors_per_block,
				(data_block + 1) * pool->sectors_per_block);
	} else
1324
		process_prepared_mapping(m);
1325
}
1326

1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1347
1348
}

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

static void check_for_space(struct pool *pool)
{
	int r;
	dm_block_t nr_free;

	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
		return;

	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
	if (r)
		return;

	if (nr_free)
		set_pool_mode(pool, PM_WRITE);
}

1367
1368
1369
1370
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
1371
static int commit(struct pool *pool)
1372
1373
1374
{
	int r;

1375
	if (get_pool_mode(pool) >= PM_READ_ONLY)
1376
1377
		return -EINVAL;

1378
	r = dm_pool_commit_metadata(pool->pmd);
1379
1380
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1381
1382
	else
		check_for_space(pool);
1383
1384
1385
1386

	return r;
}

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}
}

1401
1402
1403
1404
1405
1406
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	struct pool *pool = tc->pool;

1407
	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))