dm-thin.c 107 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

207
struct pool_features {
208
209
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
210
211
212
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
213
	bool error_if_no_space:1;
214
215
};

216
217
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219
220
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

221
222
#define CELL_SORT_ARRAY_SIZE 8192

223
224
225
226
227
228
229
230
231
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
232
	uint32_t sectors_per_block;
233
	int sectors_per_block_shift;
234

235
	struct pool_features pf;
236
	bool low_water_triggered:1;	/* A dm event has been sent */
237
	bool suspended:1;
238
	bool out_of_data_space:1;
239

240
	struct dm_bio_prison *prison;
241
242
243
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
244
	struct throttle throttle;
245
	struct work_struct worker;
246
	struct delayed_work waker;
247
	struct delayed_work no_space_timeout;
248

249
	unsigned long last_commit_jiffies;
250
	unsigned ref_count;
251
252
253
254

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
255
	struct list_head prepared_discards;
256
	struct list_head active_thins;
257

258
259
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
260

Mike Snitzer's avatar
Mike Snitzer committed
261
	struct dm_thin_new_mapping *next_mapping;
262
	mempool_t *mapping_pool;
263
264
265
266

	process_bio_fn process_bio;
	process_bio_fn process_discard;

267
268
269
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

270
271
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
272

273
	struct dm_bio_prison_cell **cell_sort_array;
274
275
};

276
static enum pool_mode get_pool_mode(struct pool *pool);
277
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278

279
280
281
282
283
284
285
286
287
288
289
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
290
291
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292
293
294
295
296
297
};

/*
 * Target context for a thin.
 */
struct thin_c {
298
	struct list_head list;
299
	struct dm_dev *pool_dev;
300
	struct dm_dev *origin_dev;
301
	sector_t origin_size;
302
303
304
305
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
306
307
	struct mapped_device *thin_md;

308
	bool requeue_mode:1;
309
	spinlock_t lock;
310
	struct list_head deferred_cells;
311
312
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
313
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315
316
317
318
319
320

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
321
322
323
324
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/**
 * __blkdev_issue_discard_async - queue a discard with async completion
 * @bdev:	blockdev to issue discard for
 * @sector:	start sector
 * @nr_sects:	number of sectors to discard
 * @gfp_mask:	memory allocation flags (for bio_alloc)
 * @flags:	BLKDEV_IFL_* flags to control behaviour
 * @parent_bio: parent discard bio that all sub discards get chained to
 *
 * Description:
 *    Asynchronously issue a discard request for the sectors in question.
 */
static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
					struct bio *parent_bio)
{
	struct request_queue *q = bdev_get_queue(bdev);
	int type = REQ_WRITE | REQ_DISCARD;
	struct bio *bio;

345
	if (!q || !nr_sects)
Joe Thornber's avatar
Joe Thornber committed
346
347
348
349
350
351
352
353
354
355
356
		return -ENXIO;

	if (!blk_queue_discard(q))
		return -EOPNOTSUPP;

	if (flags & BLKDEV_DISCARD_SECURE) {
		if (!blk_queue_secdiscard(q))
			return -EOPNOTSUPP;
		type |= REQ_SECURE;
	}

357
358
359
360
361
362
	/*
	 * Required bio_put occurs in bio_endio thanks to bio_chain below
	 */
	bio = bio_alloc(gfp_mask, 1);
	if (!bio)
		return -ENOMEM;
Joe Thornber's avatar
Joe Thornber committed
363

364
	bio_chain(bio, parent_bio);
Joe Thornber's avatar
Joe Thornber committed
365

366
367
368
	bio->bi_iter.bi_sector = sector;
	bio->bi_bdev = bdev;
	bio->bi_iter.bi_size = nr_sects << 9;
Joe Thornber's avatar
Joe Thornber committed
369

370
	submit_bio(type, bio);
Joe Thornber's avatar
Joe Thornber committed
371

372
	return 0;
Joe Thornber's avatar
Joe Thornber committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
}

static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
			 struct bio *parent_bio)
{
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);

	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
					    GFP_NOWAIT, 0, parent_bio);
}

/*----------------------------------------------------------------*/

399
400
401
402
403
404
405
406
407
408
409
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

441
442
443
444
445
446
447
448
449
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

450
451
452
453
454
455
456
457
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

458
459
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
460
{
461
	dm_cell_error(pool->prison, cell, error_code);
462
463
464
	dm_bio_prison_free_cell(pool->prison, cell);
}

465
466
467
468
469
static int get_pool_io_error_code(struct pool *pool)
{
	return pool->out_of_data_space ? -ENOSPC : -EIO;
}

470
471
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
472
473
474
	int error = get_pool_io_error_code(pool);

	cell_error_with_code(pool, cell, error);
475
476
}

477
478
479
480
481
482
483
484
485
486
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

487
488
/*----------------------------------------------------------------*/

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
549
struct dm_thin_endio_hook {
550
	struct thin_c *tc;
551
552
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
553
	struct dm_thin_new_mapping *overwrite_mapping;
554
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
555
	struct dm_bio_prison_cell *cell;
556
557
};

558
559
560
561
562
563
564
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
565
566
{
	struct bio *bio;
567

568
569
570
571
	while ((bio = bio_list_pop(bios))) {
		bio->bi_error = error;
		bio_endio(bio);
	}
572
573
574
575
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
576
	struct bio_list bios;
577
	unsigned long flags;
578
579

	bio_list_init(&bios);
580

581
	spin_lock_irqsave(&tc->lock, flags);
582
	__merge_bio_list(&bios, master);
583
	spin_unlock_irqrestore(&tc->lock, flags);
584

585
	error_bio_list(&bios, error);
586
587
}

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

605
606
static void requeue_io(struct thin_c *tc)
{
607
	struct bio_list bios;
608
	unsigned long flags;
609
610
611

	bio_list_init(&bios);

612
	spin_lock_irqsave(&tc->lock, flags);
613
614
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
615
	spin_unlock_irqrestore(&tc->lock, flags);
616

617
618
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
619
620
}

621
static void error_retry_list_with_code(struct pool *pool, int error)
622
623
624
625
626
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
627
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
628
629
630
	rcu_read_unlock();
}

631
632
static void error_retry_list(struct pool *pool)
{
633
634
	int error = get_pool_io_error_code(pool);

635
	error_retry_list_with_code(pool, error);
636
637
}

638
639
640
641
642
643
644
645
646
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
647
	struct pool *pool = tc->pool;
648
	sector_t block_nr = bio->bi_iter.bi_sector;
649

650
651
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
652
	else
653
		(void) sector_div(block_nr, pool->sectors_per_block);
654
655

	return block_nr;
656
657
}

Joe Thornber's avatar
Joe Thornber committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

686
687
688
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
689
	sector_t bi_sector = bio->bi_iter.bi_sector;
690
691

	bio->bi_bdev = tc->pool_dev->bdev;
692
	if (block_size_is_power_of_two(pool))
693
694
695
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
696
	else
697
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
698
				 sector_div(bi_sector, pool->sectors_per_block);
699
700
}

701
702
703
704
705
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

706
707
708
709
710
711
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

712
713
714
715
716
717
718
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

719
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
720
721
722
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

723
static void issue(struct thin_c *tc, struct bio *bio)
724
725
726
727
{
	struct pool *pool = tc->pool;
	unsigned long flags;

728
729
730
731
732
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

733
	/*
734
735
736
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
737
	 */
738
739
740
741
742
743
744
745
746
747
748
749
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
750
751
}

752
753
754
755
756
757
758
759
760
761
762
763
764
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

765
766
767
768
769
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
770
struct dm_thin_new_mapping {
771
772
	struct list_head list;

773
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
774
	bool maybe_shared:1;
775

776
777
778
779
780
781
782
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

783
	int err;
784
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
785
	dm_block_t virt_begin, virt_end;
786
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
787
	struct dm_bio_prison_cell *cell;
788
789
790
791
792
793
794
795
796
797
798

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

799
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
800
801
802
{
	struct pool *pool = m->tc->pool;

803
	if (atomic_dec_and_test(&m->prepare_actions)) {
804
		list_add_tail(&m->list, &pool->prepared_mappings);
805
806
807
808
		wake_worker(pool);
	}
}

809
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
810
811
812
813
814
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
815
	__complete_mapping_preparation(m);
816
817
818
	spin_unlock_irqrestore(&pool->lock, flags);
}

819
820
821
822
823
824
825
826
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

827
static void overwrite_endio(struct bio *bio)
828
{
829
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
830
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
831

832
833
	bio->bi_end_io = m->saved_bi_end_io;

834
	m->err = bio->bi_error;
835
	complete_mapping_preparation(m);
836
837
838
839
840
841
842
843
844
845
846
847
848
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
849
850
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
851
 */
852
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
853
854
855
856
{
	struct pool *pool = tc->pool;
	unsigned long flags;

857
858
859
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
860
861
862
863

	wake_worker(pool);
}

864
865
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

866
867
868
869
870
871
872
873
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
874
{
875
	struct remap_info *info = context;
876
877
	struct bio *bio;

878
	while ((bio = bio_list_pop(&cell->bios))) {
879
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
880
			bio_list_add(&info->defer_bios, bio);
881
		else {
882
883
884
885
886
887
888
889
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
890
891
892
893
		}
	}
}

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

920
921
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
922
	cell_error(m->tc->pool, m->cell);
923
924
925
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
926

Mike Snitzer's avatar
Mike Snitzer committed
927
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
928
929
{
	struct thin_c *tc = m->tc;
930
	struct pool *pool = tc->pool;
931
	struct bio *bio = m->bio;
932
933
934
	int r;

	if (m->err) {
935
		cell_error(pool, m->cell);
936
		goto out;
937
938
939
940
941
942
943
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
944
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
945
	if (r) {
946
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
947
		cell_error(pool, m->cell);
948
		goto out;
949
950
951
952
953
954
955
956
957
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
958
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959
		bio_endio(bio);
960
961
962
963
964
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
965

966
out:
967
	list_del(&m->list);
968
	mempool_free(m, pool->mapping_pool);
969
970
}

Joe Thornber's avatar
Joe Thornber committed
971
972
973
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
974
975
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
976
977
978
979
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
980

Joe Thornber's avatar
Joe Thornber committed
981
982
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
983
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
984
985
986
987
988
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
989
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
1003
		bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1004

1005
	cell_defer_no_holder(tc, m->cell);
1006
1007
1008
	mempool_free(m, tc->pool->mapping_pool);
}

Joe Thornber's avatar
Joe Thornber committed
1009
static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1010
{
Joe Thornber's avatar
Joe Thornber committed
1011
1012
1013
1014
1015
1016
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
	int r;
	bool used = true;
1017
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1018
1019
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
Joe Thornber's avatar
Joe Thornber committed
1020

Joe Thornber's avatar
Joe Thornber committed
1021
1022
1023
1024
1025
1026
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
				return r;
1027

Joe Thornber's avatar
Joe Thornber committed
1028
1029
			if (!used)
				break;
1030
		}
Joe Thornber's avatar
Joe Thornber committed
1031

Joe Thornber's avatar
Joe Thornber committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
				return r;

			if (used)
				break;
		}

		r = issue_discard(tc, b, e, m->bio);
		if (r)
			return r;

		b = e;
	}

	return 0;
Joe Thornber's avatar
Joe Thornber committed
1053
1054
}

Joe Thornber's avatar
Joe Thornber committed
1055
static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056
1057
1058
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1059
	struct pool *pool = tc->pool;
1060

Joe Thornber's avatar
Joe Thornber committed
1061
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062
	if (r)
Joe Thornber's avatar
Joe Thornber committed
1063
1064
1065
1066
1067
1068
		metadata_operation_failed(pool, "dm_thin_remove_range", r);

	else if (m->maybe_shared)
		r = passdown_double_checking_shared_status(m);
	else
		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1069

Joe Thornber's avatar
Joe Thornber committed
1070
1071
1072
1073
	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
1074
1075
	m->bio->bi_error = r;
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1076
1077
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1078
1079
}

Joe Thornber's avatar
Joe Thornber committed
1080
static void process_prepared(struct pool *pool, struct list_head *head,
1081
			     process_mapping_fn *fn)
1082
1083
1084
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1085
	struct dm_thin_new_mapping *m, *tmp;
1086
1087
1088

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1089
	list_splice_init(head, &maps);
1090
1091
1092
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1093
		(*fn)(m);
1094
1095
1096
1097
1098
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1099
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100
{
1101
1102
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1103
1104
1105
1106
1107
1108
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1128
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129
{
1130
	struct dm_thin_new_mapping *m = pool->next_mapping;
1131
1132
1133

	BUG_ON(!pool->next_mapping);

1134
1135
1136
1137
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1138
1139
	pool->next_mapping = NULL;

1140
	return m;
1141
1142
}

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1160
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1161
				      dm_block_t data_begin,
1162
1163
1164
1165
1166
1167
1168
1169
1170
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1171
	remap_and_issue(tc, bio, data_begin);
1172
1173
}

1174
1175
1176
/*
 * A partial copy also needs to zero the uncopied region.
 */
1177
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178
1179
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1180
1181
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1182
1183
1184
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1185
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186
1187

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1188
1189
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1190
1191
1192
	m->data_block = data_dest;
	m->cell = cell;

1193
1194
1195
1196
1197
1198
1199
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1200
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201
		complete_mapping_preparation(m); /* already quiesced */
1202
1203
1204
1205
1206
1207
1208

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1209
1210
1211
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1212
1213
		struct dm_io_region from, to;

1214
		from.bdev = origin->bdev;
1215
		from.sector = data_origin * pool->sectors_per_block;
1216
		from.count = len;
1217
1218
1219

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1220
		to.count = len;
1221
1222
1223
1224

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1225
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1244
1245
		}
	}
1246
1247

	complete_mapping_preparation(m); /* drop our ref */
1248
1249
}

1250
1251
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1252
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1253
1254
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1255
1256
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1257
1258
}

1259
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1260
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261
1262
1263
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1264
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265

1266
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267
	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1268
1269
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1270
1271
1272
1273
1274
1275
1276
1277
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1278
1279
1280
1281
1282
1283
1284
	if (pool->pf.zero_new_blocks) {
		if (io_overwrites_block(pool, bio))
			remap_and_issue_overwrite(tc, bio, data_block, m);
		else
			ll_zero(tc, m, data_block * pool->sectors_per_block,
				(data_block + 1) * pool->sectors_per_block);
	} else
1285
		process_prepared_mapping(m);
1286
}
1287

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1308
1309
}

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

static void check_for_space(struct pool *pool)
{
	int r;