dm-thin.c 80.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
24
#define ENDIO_HOOK_POOL_SIZE 1024
25
26
#define MAPPING_POOL_SIZE 1024
#define PRISON_CELLS 1024
27
#define COMMIT_PERIOD HZ
28

29
30
31
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
64
 * including all devices that share this block.  (see dm_deferred_set code)
65
66
67
68
69
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
70
 * (process_prepared_mapping).  This act of inserting breaks some
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
static void build_data_key(struct dm_thin_device *td,
108
			   dm_block_t b, struct dm_cell_key *key)
109
110
111
112
113
114
115
{
	key->virtual = 0;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116
			      struct dm_cell_key *key)
117
118
119
120
121
122
123
124
125
126
127
128
129
{
	key->virtual = 1;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

/*----------------------------------------------------------------*/

/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
130
struct dm_thin_new_mapping;
131

132
/*
133
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
134
135
136
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
137
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
138
139
140
141
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

142
struct pool_features {
143
144
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
145
146
147
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
148
	bool error_if_no_space:1;
149
150
};

151
152
153
154
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

155
156
157
158
159
160
161
162
163
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
164
	uint32_t sectors_per_block;
165
	int sectors_per_block_shift;
166

167
	struct pool_features pf;
168
	bool low_water_triggered:1;	/* A dm event has been sent */
169

170
	struct dm_bio_prison *prison;
171
172
173
174
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
	struct work_struct worker;
175
	struct delayed_work waker;
176

177
	unsigned long last_commit_jiffies;
178
	unsigned ref_count;
179
180
181
182
183

	spinlock_t lock;
	struct bio_list deferred_bios;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
184
	struct list_head prepared_discards;
185
186
187

	struct bio_list retry_on_resume_list;

188
189
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
190

Mike Snitzer's avatar
Mike Snitzer committed
191
	struct dm_thin_new_mapping *next_mapping;
192
	mempool_t *mapping_pool;
193
194
195
196
197
198

	process_bio_fn process_bio;
	process_bio_fn process_discard;

	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
199
200
};

201
static enum pool_mode get_pool_mode(struct pool *pool);
202
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203

204
205
206
207
208
209
210
211
212
213
214
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
215
216
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217
218
219
220
221
222
223
};

/*
 * Target context for a thin.
 */
struct thin_c {
	struct dm_dev *pool_dev;
224
	struct dm_dev *origin_dev;
225
226
227
228
229
230
231
232
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
};

/*----------------------------------------------------------------*/

233
234
235
236
237
238
239
240
241
242
243
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

283
284
285
286
287
288
289
290
291
292
293
294
295
static void cell_defer_no_holder_no_free(struct thin_c *tc,
					 struct dm_bio_prison_cell *cell)
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
	spin_unlock_irqrestore(&pool->lock, flags);

	wake_worker(pool);
}

296
297
298
299
300
301
302
303
304
static void cell_error(struct pool *pool,
		       struct dm_bio_prison_cell *cell)
{
	dm_cell_error(pool->prison, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

/*----------------------------------------------------------------*/

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
365
struct dm_thin_endio_hook {
366
	struct thin_c *tc;
367
368
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
369
	struct dm_thin_new_mapping *overwrite_mapping;
370
371
};

372
373
374
375
376
377
378
379
380
381
static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
{
	struct bio *bio;
	struct bio_list bios;

	bio_list_init(&bios);
	bio_list_merge(&bios, master);
	bio_list_init(master);

	while ((bio = bio_list_pop(&bios))) {
382
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
383

384
		if (h->tc == tc)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
			bio_endio(bio, DM_ENDIO_REQUEUE);
		else
			bio_list_add(master, bio);
	}
}

static void requeue_io(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	__requeue_bio_list(tc, &pool->deferred_bios);
	__requeue_bio_list(tc, &pool->retry_on_resume_list);
	spin_unlock_irqrestore(&pool->lock, flags);
}

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
static void error_retry_list(struct pool *pool)
{
	struct bio *bio;
	unsigned long flags;
	struct bio_list bios;

	bio_list_init(&bios);

	spin_lock_irqsave(&pool->lock, flags);
	bio_list_merge(&bios, &pool->retry_on_resume_list);
	bio_list_init(&pool->retry_on_resume_list);
	spin_unlock_irqrestore(&pool->lock, flags);

	while ((bio = bio_list_pop(&bios)))
		bio_io_error(bio);
}

419
420
421
422
423
424
425
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

426
427
428
429
430
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

431
432
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
433
	struct pool *pool = tc->pool;
434
	sector_t block_nr = bio->bi_iter.bi_sector;
435

436
437
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
438
	else
439
		(void) sector_div(block_nr, pool->sectors_per_block);
440
441

	return block_nr;
442
443
444
445
446
}

static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
447
	sector_t bi_sector = bio->bi_iter.bi_sector;
448
449

	bio->bi_bdev = tc->pool_dev->bdev;
450
	if (block_size_is_power_of_two(pool))
451
452
453
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
454
	else
455
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
456
				 sector_div(bi_sector, pool->sectors_per_block);
457
458
}

459
460
461
462
463
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

464
465
466
467
468
469
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

470
471
472
473
474
475
476
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

477
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
478
479
480
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

481
static void issue(struct thin_c *tc, struct bio *bio)
482
483
484
485
{
	struct pool *pool = tc->pool;
	unsigned long flags;

486
487
488
489
490
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

491
	/*
492
493
494
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
495
	 */
496
497
498
499
500
501
502
503
504
505
506
507
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
508
509
}

510
511
512
513
514
515
516
517
518
519
520
521
522
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

523
524
525
526
527
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
528
struct dm_thin_new_mapping {
529
530
	struct list_head list;

531
532
533
534
	bool quiesced:1;
	bool prepared:1;
	bool pass_discard:1;
	bool definitely_not_shared:1;
535

536
	int err;
537
538
539
	struct thin_c *tc;
	dm_block_t virt_block;
	dm_block_t data_block;
Mike Snitzer's avatar
Mike Snitzer committed
540
	struct dm_bio_prison_cell *cell, *cell2;
541
542
543
544
545
546
547
548
549
550
551

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

Mike Snitzer's avatar
Mike Snitzer committed
552
static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
553
554
555
{
	struct pool *pool = m->tc->pool;

556
	if (m->quiesced && m->prepared) {
557
		list_add_tail(&m->list, &pool->prepared_mappings);
558
559
560
561
562
563
564
		wake_worker(pool);
	}
}

static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	unsigned long flags;
Mike Snitzer's avatar
Mike Snitzer committed
565
	struct dm_thin_new_mapping *m = context;
566
567
568
569
570
	struct pool *pool = m->tc->pool;

	m->err = read_err || write_err ? -EIO : 0;

	spin_lock_irqsave(&pool->lock, flags);
571
	m->prepared = true;
572
573
574
575
576
577
578
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

static void overwrite_endio(struct bio *bio, int err)
{
	unsigned long flags;
579
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
580
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
581
582
583
584
585
	struct pool *pool = m->tc->pool;

	m->err = err;

	spin_lock_irqsave(&pool->lock, flags);
586
	m->prepared = true;
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
 * This sends the bios in the cell back to the deferred_bios list.
 */
Joe Thornber's avatar
Joe Thornber committed
604
static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
605
606
607
608
609
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
610
	cell_release(pool, cell, &pool->deferred_bios);
611
612
613
614
615
616
	spin_unlock_irqrestore(&tc->pool->lock, flags);

	wake_worker(pool);
}

/*
617
 * Same as cell_defer above, except it omits the original holder of the cell.
618
 */
619
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
620
621
622
623
624
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
625
	cell_release_no_holder(pool, cell, &pool->deferred_bios);
626
627
628
629
630
	spin_unlock_irqrestore(&pool->lock, flags);

	wake_worker(pool);
}

631
632
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
Kent Overstreet's avatar
Kent Overstreet committed
633
	if (m->bio) {
634
		m->bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
635
636
		atomic_inc(&m->bio->bi_remaining);
	}
637
	cell_error(m->tc->pool, m->cell);
638
639
640
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
641

Mike Snitzer's avatar
Mike Snitzer committed
642
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
643
644
{
	struct thin_c *tc = m->tc;
645
	struct pool *pool = tc->pool;
646
647
648
649
	struct bio *bio;
	int r;

	bio = m->bio;
Kent Overstreet's avatar
Kent Overstreet committed
650
	if (bio) {
651
		bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
652
653
		atomic_inc(&bio->bi_remaining);
	}
654
655

	if (m->err) {
656
		cell_error(pool, m->cell);
657
		goto out;
658
659
660
661
662
663
664
665
666
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
	if (r) {
667
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
668
		cell_error(pool, m->cell);
669
		goto out;
670
671
672
673
674
675
676
677
678
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
679
		cell_defer_no_holder(tc, m->cell);
680
681
		bio_endio(bio, 0);
	} else
Joe Thornber's avatar
Joe Thornber committed
682
		cell_defer(tc, m->cell);
683

684
out:
685
	list_del(&m->list);
686
	mempool_free(m, pool->mapping_pool);
687
688
}

689
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
690
691
692
{
	struct thin_c *tc = m->tc;

693
	bio_io_error(m->bio);
694
695
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
696
697
698
699
700
701
	mempool_free(m, tc->pool->mapping_pool);
}

static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
702

703
	inc_all_io_entry(tc->pool, m->bio);
704
705
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
706

Joe Thornber's avatar
Joe Thornber committed
707
	if (m->pass_discard)
708
709
710
711
712
713
714
715
716
		if (m->definitely_not_shared)
			remap_and_issue(tc, m->bio, m->data_block);
		else {
			bool used = false;
			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
				bio_endio(m->bio, 0);
			else
				remap_and_issue(tc, m->bio, m->data_block);
		}
Joe Thornber's avatar
Joe Thornber committed
717
718
719
720
721
722
	else
		bio_endio(m->bio, 0);

	mempool_free(m, tc->pool->mapping_pool);
}

723
724
725
726
727
728
729
static void process_prepared_discard(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_block(tc->td, m->virt_block);
	if (r)
730
		DMERR_LIMIT("dm_thin_remove_block() failed");
731
732
733
734

	process_prepared_discard_passdown(m);
}

Joe Thornber's avatar
Joe Thornber committed
735
static void process_prepared(struct pool *pool, struct list_head *head,
736
			     process_mapping_fn *fn)
737
738
739
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
740
	struct dm_thin_new_mapping *m, *tmp;
741
742
743

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
744
	list_splice_init(head, &maps);
745
746
747
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
748
		(*fn)(m);
749
750
751
752
753
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
754
static int io_overlaps_block(struct pool *pool, struct bio *bio)
755
{
756
757
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
758
759
760
761
762
763
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
783
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
784
{
785
	struct dm_thin_new_mapping *m = pool->next_mapping;
786
787
788

	BUG_ON(!pool->next_mapping);

789
790
791
792
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

793
794
	pool->next_mapping = NULL;

795
	return m;
796
797
798
}

static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
799
800
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
801
			  struct dm_bio_prison_cell *cell, struct bio *bio)
802
803
804
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
805
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
806
807
808
809
810
811

	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_dest;
	m->cell = cell;

812
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
813
		m->quiesced = true;
814
815
816
817
818
819
820
821

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
	if (io_overwrites_block(pool, bio)) {
822
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
823

824
		h->overwrite_mapping = m;
825
826
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
827
		inc_all_io_entry(pool, bio);
828
829
830
831
		remap_and_issue(tc, bio, data_dest);
	} else {
		struct dm_io_region from, to;

832
		from.bdev = origin->bdev;
833
834
835
836
837
838
839
840
841
842
843
		from.sector = data_origin * pool->sectors_per_block;
		from.count = pool->sectors_per_block;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
844
			DMERR_LIMIT("dm_kcopyd_copy() failed");
845
			cell_error(pool, cell);
846
847
848
849
		}
	}
}

850
851
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
852
				   struct dm_bio_prison_cell *cell, struct bio *bio)
853
854
855
856
857
858
859
{
	schedule_copy(tc, virt_block, tc->pool_dev,
		      data_origin, data_dest, cell, bio);
}

static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
860
				   struct dm_bio_prison_cell *cell, struct bio *bio)
861
862
863
864
865
{
	schedule_copy(tc, virt_block, tc->origin_dev,
		      virt_block, data_dest, cell, bio);
}

866
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
867
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
868
869
870
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
871
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
872

873
874
	m->quiesced = true;
	m->prepared = false;
875
876
877
878
879
880
881
882
883
884
	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
885
	if (!pool->pf.zero_new_blocks)
886
887
888
		process_prepared_mapping(m);

	else if (io_overwrites_block(pool, bio)) {
889
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
890

891
		h->overwrite_mapping = m;
892
893
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
894
		inc_all_io_entry(pool, bio);
895
896
897
898
899
900
901
902
903
904
905
906
		remap_and_issue(tc, bio, data_block);
	} else {
		int r;
		struct dm_io_region to;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_block * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
907
			DMERR_LIMIT("dm_kcopyd_zero() failed");
908
			cell_error(pool, cell);
909
910
911
912
		}
	}
}

913
914
915
916
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
917
static int commit(struct pool *pool)
918
919
920
921
922
923
{
	int r;

	if (get_pool_mode(pool) != PM_WRITE)
		return -EINVAL;

924
	r = dm_pool_commit_metadata(pool->pmd);
925
926
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
927
928
929
930

	return r;
}

931
932
933
934
935
936
937
938
939
940
941
942
943
944
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}
}

945
946
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

947
948
949
950
951
952
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	struct pool *pool = tc->pool;

953
	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
954
955
		return -EINVAL;

956
	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
957
958
	if (r) {
		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
959
		return r;
960
	}
961

962
	check_low_water_mark(pool, free_blocks);
963
964

	if (!free_blocks) {
965
966
967
968
		/*
		 * Try to commit to see if that will free up some
		 * more space.
		 */
969
970
971
		r = commit(pool);
		if (r)
			return r;
972

973
		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
974
975
		if (r) {
			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
976
			return r;
977
		}
978

979
		if (!free_blocks) {
980
			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
981
			return -ENOSPC;
982
983
984
985
		}
	}

	r = dm_pool_alloc_data_block(pool->pmd, result);
986
	if (r) {
987
		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
988
		return r;
989
	}
990
991
992
993
994
995
996
997
998
999

	return 0;
}

/*
 * If we have run out of space, queue bios until the device is
 * resumed, presumably after having been reloaded with more space.
 */
static void retry_on_resume(struct bio *bio)
{
1000
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1001
	struct thin_c *tc = h->tc;
1002
1003
1004
1005
1006
1007
1008
1009
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->retry_on_resume_list, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
}

1010
static bool should_error_unserviceable_bio(struct pool *pool)
1011
{
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
	enum pool_mode m = get_pool_mode(pool);

	switch (m) {
	case PM_WRITE:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
		return true;

	case PM_OUT_OF_DATA_SPACE:
		return pool->pf.error_if_no_space;

	case PM_READ_ONLY:
	case PM_FAIL:
		return true;
	default:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
		return true;
	}
}
1032

1033
1034
1035
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
{
	if (should_error_unserviceable_bio(pool))
1036
		bio_io_error(bio);
1037
1038
	else
		retry_on_resume(bio);
1039
1040
}

1041
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1042
1043
1044
1045
{
	struct bio *bio;
	struct bio_list bios;

1046
1047
1048
1049
1050
	if (should_error_unserviceable_bio(pool)) {
		cell_error(pool, cell);
		return;
	}

1051
	bio_list_init(&bios);
1052
	cell_release(pool, cell, &bios);
1053

1054
1055
1056
1057
1058
1059
	if (should_error_unserviceable_bio(pool))
		while ((bio = bio_list_pop(&bios)))
			bio_io_error(bio);
	else
		while ((bio = bio_list_pop(&bios)))
			retry_on_resume(bio);
1060
1061
}

Joe Thornber's avatar
Joe Thornber committed
1062
1063
1064
static void process_discard(struct thin_c *tc, struct bio *bio)
{
	int r;
1065
	unsigned long flags;
Joe Thornber's avatar
Joe Thornber committed
1066
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1067
	struct dm_bio_prison_cell *cell, *cell2;
1068
	struct dm_cell_key key, key2;
Joe Thornber's avatar
Joe Thornber committed
1069
1070
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;
Mike Snitzer's avatar
Mike Snitzer committed
1071
	struct dm_thin_new_mapping *m;
Joe Thornber's avatar
Joe Thornber committed
1072
1073

	build_virtual_key(tc->td, block, &key);
1074
	if (bio_detain(tc->pool, &key, bio, &cell))
Joe Thornber's avatar
Joe Thornber committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
		return;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		/*
		 * Check nobody is fiddling with this pool block.  This can
		 * happen if someone's in the process of breaking sharing
		 * on this block.
		 */
		build_data_key(tc->td, lookup_result.block, &key2);
1086
		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1087
			cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
			break;
		}

		if (io_overlaps_block(pool, bio)) {
			/*
			 * IO may still be going to the destination block.  We must
			 * quiesce before we can do the removal.
			 */
			m = get_next_mapping(pool);
			m->tc = tc;
1098
1099
			m->pass_discard = pool->pf.discard_passdown;
			m->definitely_not_shared = !lookup_result.shared;
Joe Thornber's avatar
Joe Thornber committed
1100
1101
1102
1103
1104
1105
			m->virt_block = block;
			m->data_block = lookup_result.block;
			m->cell = cell;
			m->cell2 = cell2;
			m->bio = bio;

1106
			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1107
				spin_lock_irqsave(&pool->lock, flags);
1108
				list_add_tail(&m->list, &pool->prepared_discards);
1109
				spin_unlock_irqrestore(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1110
1111
1112
				wake_worker(pool);
			}
		} else {
1113
			inc_all_io_entry(pool, bio);
1114
1115
			cell_defer_no_holder(tc, cell);
			cell_defer_no_holder(tc, cell2);
1116

Joe Thornber's avatar
Joe Thornber committed
1117
			/*
1118
1119
1120
			 * The DM core makes sure that the discard doesn't span
			 * a block boundary.  So we submit the discard of a
			 * partial block appropriately.
Joe Thornber's avatar
Joe Thornber committed
1121
			 */
1122
1123
1124
1125
			if ((!lookup_result.shared) && pool->pf.discard_passdown)
				remap_and_issue(tc, bio, lookup_result.block);
			else
				bio_endio(bio, 0);
Joe Thornber's avatar
Joe Thornber committed
1126
1127
1128
1129
1130
1131
1132
		}
		break;

	case -ENODATA:
		/*
		 * It isn't provisioned, just forget it.
		 */
1133
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1134
1135
1136
1137
		bio_endio(bio, 0);
		break;

	default:
1138
1139
		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
			    __func__, r);
1140
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1141
1142
1143
1144
1145
		bio_io_error(bio);
		break;
	}
}

1146
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1147
			  struct dm_cell_key *key,
1148
			  struct dm_thin_lookup_result *lookup_result,
Mike Snitzer's avatar
Mike Snitzer committed
1149
			  struct dm_bio_prison_cell *cell)
1150
1151
1152
{
	int r;
	dm_block_t data_block;
1153
	struct pool *pool = tc->pool;
1154
1155
1156
1157

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1158
1159
		schedule_internal_copy(tc, block, lookup_result->block,
				       data_block, cell, bio);
1160
1161
1162
		break;

	case -ENOSPC:
1163
		retry_bios_on_resume(pool, cell);
1164
1165
1166
		break;

	default:
1167
1168
		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
			    __func__, r);
1169
		cell_error(pool, cell);
1170
1171
1172
1173
1174
1175
1176
1177
		break;
	}
}

static void process_shared_bio(struct thin_c *tc, struct bio *bio,
			       dm_block_t block,
			       struct dm_thin_lookup_result *lookup_result)
{
Mike Snitzer's avatar
Mike Snitzer committed
1178
	struct dm_bio_prison_cell *cell;
1179
	struct pool *pool = tc->pool;
1180
	struct dm_cell_key key;
1181
1182
1183
1184
1185
1186

	/*
	 * If cell is already occupied, then sharing is already in the process
	 * of being broken so we have nothing further to do here.
	 */
	build_data_key(tc->td, lookup_result->block, &key);
1187
	if (bio_detain(pool, &key, bio, &cell))
1188
1189
		return;

1190
	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1191
1192
		break_sharing(tc, bio, block, &key, lookup_result, cell);
	else {
1193
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1194

1195
		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1196
		inc_all_io_entry(pool, bio);
1197
		cell_defer_no_holder(tc, cell);
1198

1199
1200
1201
1202
1203
		remap_and_issue(tc, bio, lookup_result->block);
	}
}

static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
Mike Snitzer's avatar
Mike Snitzer committed
1204
			    struct dm_bio_prison_cell *cell)
1205
1206
1207
{
	int r;
	dm_block_t data_block;
1208
	struct pool *pool = tc->pool;
1209
1210
1211
1212

	/*
	 * Remap empty bios (flushes) immediately, without provisioning.
	 */
1213
	if (!bio->bi_iter.bi_size) {
1214
		inc_all_io_entry(pool, bio);
1215
		cell_defer_no_holder(tc, cell);
1216

1217
1218
1219
1220
1221
1222
1223
1224
1225
		remap_and_issue(tc, bio, 0);
		return;
	}

	/*
	 * Fill read bios with zeroes and complete them immediately.
	 */
	if (bio_data_dir(bio) == READ) {
		zero_fill_bio(bio);
1226
		cell_defer_no_holder(tc, cell);
1227
1228
1229
1230
1231
1232
1233
		bio_endio(bio, 0);
		return;
	}

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1234
1235
1236
1237
		if (tc->origin_dev)
			schedule_external_copy(tc, block, data_block, cell, bio);
		else
			schedule_zero(tc, block, data_block, cell, bio);
1238
1239
1240
		break;

	case -ENOSPC:
1241
		retry_bios_on_resume(pool, cell);
1242
1243
1244
		break;

	default:
1245
1246
		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
			    __func__, r);
1247
		cell_error(pool, cell);
1248
1249
1250
1251
1252
1253
1254
		break;
	}
}

static void process_bio(struct thin_c *tc, struct bio *bio)
{
	int r;
1255
	struct pool *pool = tc->pool;
1256
	dm_block_t block = get_bio_block(tc, bio);
Mike Snitzer's avatar
Mike Snitzer committed
1257
	struct dm_bio_prison_cell *cell;
1258
	struct dm_cell_key key;
1259
1260
1261
1262
1263
1264
1265
	struct dm_thin_lookup_result lookup_result;

	/*
	 * If cell is already occupied, then the block is already
	 * being provisioned so we have nothing further to do here.
	 */
	build_virtual_key(tc->td, block, &key);
1266
	if (bio_detain(pool, &key, bio, &cell))
1267
1268
1269
1270
1271
		return;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
1272
		if (lookup_result.shared) {
1273
			process_shared_bio(tc, bio, block, &lookup_result);
1274
			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1275
		} else {
1276
			inc_all_io_entry(pool, bio);
1277
			cell_defer_no_holder(tc, cell);
1278

1279
			remap_and_issue(tc, bio, lookup_result.block);
1280
		}
1281