rtd520.c 57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
    comedi/drivers/rtd520.c
    Comedi driver for Real Time Devices (RTD) PCI4520/DM7520

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 2001 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: rtd520
Description: Real Time Devices PCI4520/DM7520
Author: Dan Christian
Devices: [Real Time Devices] DM7520HR-1 (rtd520), DM7520HR-8,
  PCI4520, PCI4520-8
Status: Works.  Only tested on DM7520-8.  Not SMP safe.

Configuration options:
  [0] - PCI bus of device (optional)
32
33
	If bus / slot is not specified, the first available PCI
	device will be used.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
  [1] - PCI slot of device (optional)
*/
/*
    Created by Dan Christian, NASA Ames Research Center.

    The PCI4520 is a PCI card.  The DM7520 is a PC/104-plus card.
    Both have:
    8/16 12 bit ADC with FIFO and channel gain table
    8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
    8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
    2 12 bit DACs with FIFOs
    2 bits output
    2 bits input
    bus mastering DMA
    timers: ADC sample, pacer, burst, about, delay, DA1, DA2
    sample counter
    3 user timer/counters (8254)
    external interrupt

    The DM7520 has slightly fewer features (fewer gain steps).

    These boards can support external multiplexors and multi-board
    synchronization, but this driver doesn't support that.

    Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
    Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
    Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
    Call them and ask for the register level manual.
62
    PCI chip: http://www.plxtech.com/products/io/pci9080
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    Notes:
    This board is memory mapped.  There is some IO stuff, but it isn't needed.

    I use a pretty loose naming style within the driver (rtd_blah).
    All externally visible names should be rtd520_blah.
    I use camelCase for structures (and inside them).
    I may also use upper CamelCase for function names (old habit).

    This board is somewhat related to the RTD PCI4400 board.

    I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
    das1800, since they have the best documented code.  Driver
    cb_pcidas64.c uses the same DMA controller.

Lucas De Marchi's avatar
Lucas De Marchi committed
78
    As far as I can tell, the About interrupt doesn't work if Sample is
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    also enabled.  It turns out that About really isn't needed, since
    we always count down samples read.

    There was some timer/counter code, but it didn't follow the right API.

*/

/*
  driver status:

  Analog-In supports instruction and command mode.

  With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
  (single channel, 64K read buffer).  I get random system lockups when
  using DMA with ALI-15xx based systems.  I haven't been able to test
  any other chipsets.  The lockups happen soon after the start of an
  acquistion, not in the middle of a long run.

  Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
  (with a 256K read buffer).

  Digital-IO and Analog-Out only support instruction mode.

*/

104
#include <linux/interrupt.h>
105
106
107
108
#include <linux/delay.h>

#include "../comedidev.h"

109
110
#include "comedi_fc.h"

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#define DRV_NAME "rtd520"

/*======================================================================
  Driver specific stuff (tunable)
======================================================================*/
/* Enable this to test the new DMA support. You may get hard lock ups */
/*#define USE_DMA*/

/* We really only need 2 buffers.  More than that means being much
   smarter about knowing which ones are full. */
#define DMA_CHAIN_COUNT 2	/* max DMA segments/buffers in a ring (min 2) */

/* Target period for periodic transfers.  This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000	/* 10 ms (in nanoseconds) */

/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST	128	/* max channel list that we allow */

/* tuning for ai/ao instruction done polling */
#ifdef FAST_SPIN
#define WAIT_QUIETLY		/* as nothing, spin on done bit */
#define RTD_ADC_TIMEOUT	66000	/* 2 msec at 33mhz bus rate */
#define RTD_DAC_TIMEOUT	66000
#define RTD_DMA_TIMEOUT	33000	/* 1 msec */
#else
/* by delaying, power and electrical noise are reduced somewhat */
140
#define WAIT_QUIETLY	udelay(1)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#define RTD_ADC_TIMEOUT	2000	/* in usec */
#define RTD_DAC_TIMEOUT	2000	/* in usec */
#define RTD_DMA_TIMEOUT	1000	/* in usec */
#endif

/*======================================================================
  Board specific stuff
======================================================================*/

/*
  The board has three memory windows: las0, las1, and lcfg (the PCI chip)
  Las1 has the data and can be burst DMAed 32bits at a time.
*/
#define LCFG_PCIINDEX	0
/* PCI region 1 is a 256 byte IO space mapping.  Use??? */
#define LAS0_PCIINDEX	2	/* PCI memory resources */
#define LAS1_PCIINDEX	3
#define LCFG_PCISIZE	0x100
#define LAS0_PCISIZE	0x200
#define LAS1_PCISIZE	0x10

#define RTD_CLOCK_RATE	8000000	/* 8Mhz onboard clock */
#define RTD_CLOCK_BASE	125	/* clock period in ns */

/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED	1625	/* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1	875	/* if single channel, in nanoseconds */

#define RTD_MIN_SPEED	2097151875	/* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1	5000000	/* 200Hz, in nanoseconds */

#include "rtd520.h"
#include "plx9080.h"

/* Setup continuous ring of 1/2 FIFO transfers.  See RTD manual p91 */
#define DMA_MODE_BITS (\
		       PLX_LOCAL_BUS_16_WIDE_BITS \
		       | PLX_DMA_EN_READYIN_BIT \
		       | PLX_DMA_LOCAL_BURST_EN_BIT \
		       | PLX_EN_CHAIN_BIT \
		       | PLX_DMA_INTR_PCI_BIT \
		       | PLX_LOCAL_ADDR_CONST_BIT \
		       | PLX_DEMAND_MODE_BIT)

#define DMA_TRANSFER_BITS (\
188
/* descriptors in PCI memory*/  PLX_DESC_IN_PCI_BIT \
189
190
191
192
193
194
195
196
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */		| PLX_XFER_LOCAL_TO_PCI)

/*======================================================================
  Comedi specific stuff
======================================================================*/

/*
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
 * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
 */
static const struct comedi_lrange rtd_ai_7520_range = {
	18, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
	}
223
224
225
};

/* PCI4520 has two more gains (6 more entries) */
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
static const struct comedi_lrange rtd_ai_4520_range = {
	24, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		BIP_RANGE(5.0 / 64),
		BIP_RANGE(5.0 / 128),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		BIP_RANGE(10.0 / 64),
		BIP_RANGE(10.0 / 128),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
		UNI_RANGE(10.0 / 64),
		UNI_RANGE(10.0 / 128),
	}
256
257
258
};

/* Table order matches range values */
259
260
261
262
263
264
265
static const struct comedi_lrange rtd_ao_range = {
	4, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10),
	}
266
267
};

268
struct rtdBoard {
269
	const char *name;
270
271
272
273
274
275
	int device_id;
	int aiChans;
	int aiBits;
	int aiMaxGain;
	int range10Start;	/* start of +-10V range */
	int rangeUniStart;	/* start of +10V range */
276
};
277

278
static const struct rtdBoard rtd520Boards[] = {
279
	{
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
		.name		= "DM7520",
		.device_id	= 0x7520,
		.aiChans	= 16,
		.aiBits		= 12,
		.aiMaxGain	= 32,
		.range10Start	= 6,
		.rangeUniStart	= 12,
	}, {
		.name		= "PCI4520",
		.device_id	= 0x4520,
		.aiChans	= 16,
		.aiBits		= 12,
		.aiMaxGain	= 128,
		.range10Start	= 8,
		.rangeUniStart	= 16,
	},
296
297
298
299
300
301
};

/*
   This structure is for data unique to this hardware driver.
   This is also unique for each board in the system.
*/
302
struct rtdPrivate {
303
	/* memory mapped board structures */
304
305
306
	void __iomem *las0;
	void __iomem *las1;
	void __iomem *lcfg;
307
308
309

	unsigned long intCount;	/* interrupt count */
	long aiCount;		/* total transfer size (samples) */
310
	int transCount;		/* # to transfer data. 0->1/2FIFO */
311
312
313
314
315
316
317
	int flags;		/* flag event modes */

	/* channel list info */
	/* chanBipolar tracks whether a channel is bipolar (and needs +2048) */
	unsigned char chanBipolar[RTD_MAX_CHANLIST / 8];	/* bit array */

	/* read back data */
318
	unsigned int aoValue[2];	/* Used for AO read back */
319
320
321
322

	/* timer gate (when enabled) */
	u8 utcGate[4];		/* 1 extra allows simple range check */

Lucas De Marchi's avatar
Lucas De Marchi committed
323
	/* shadow registers affect other registers, but can't be read back */
324
325
326
327
328
329
	/* The macros below update these on writes */
	u16 intMask;		/* interrupt mask */
	u16 intClearMask;	/* interrupt clear mask */
	u8 utcCtrl[4];		/* crtl mode for 3 utc + read back */
	u8 dioStatus;		/* could be read back (dio0Ctrl) */
#ifdef USE_DMA
330
331
332
333
334
	/*
	 * Always DMA 1/2 FIFO.  Buffer (dmaBuff?) is (at least) twice that
	 * size.  After transferring, interrupt processes 1/2 FIFO and
	 * passes to comedi
	 */
335
336
337
338
339
340
341
342
343
344
	s16 dma0Offset;		/* current processing offset (0, 1/2) */
	uint16_t *dma0Buff[DMA_CHAIN_COUNT];	/* DMA buffers (for ADC) */
	dma_addr_t dma0BuffPhysAddr[DMA_CHAIN_COUNT];	/* physical addresses */
	struct plx_dma_desc *dma0Chain;	/* DMA descriptor ring for dmaBuff */
	dma_addr_t dma0ChainPhysAddr;	/* physical addresses */
	/* shadow registers */
	u8 dma0Control;
	u8 dma1Control;
#endif				/* USE_DMA */
	unsigned fifoLen;
345
};
346
347
348
349
350
351
352

/* bit defines for "flags" */
#define SEND_EOS	0x01	/* send End Of Scan events */
#define DMA0_ACTIVE	0x02	/* DMA0 is active */
#define DMA1_ACTIVE	0x04	/* DMA1 is active */

/* Macros for accessing channel list bit array */
353
#define CHAN_ARRAY_TEST(array, index) \
354
	(((array)[(index)/8] >> ((index) & 0x7)) & 0x1)
355
#define CHAN_ARRAY_SET(array, index) \
356
	(((array)[(index)/8] |= 1 << ((index) & 0x7)))
357
#define CHAN_ARRAY_CLEAR(array, index) \
358
359
	(((array)[(index)/8] &= ~(1 << ((index) & 0x7))))

360
/*
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
  Given a desired period and the clock period (both in ns),
  return the proper counter value (divider-1).
  Sets the original period to be the true value.
  Note: you have to check if the value is larger than the counter range!
*/
static int rtd_ns_to_timer_base(unsigned int *nanosec,	/* desired period (in ns) */
				int round_mode, int base)
{				/* clock period (in ns) */
	int divider;

	switch (round_mode) {
	case TRIG_ROUND_NEAREST:
	default:
		divider = (*nanosec + base / 2) / base;
		break;
	case TRIG_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case TRIG_ROUND_UP:
		divider = (*nanosec + base - 1) / base;
		break;
	}
	if (divider < 2)
		divider = 2;	/* min is divide by 2 */

	/* Note: we don't check for max, because different timers
	   have different ranges */

	*nanosec = base * divider;
	return divider - 1;	/* countdown is divisor+1 */
}
392
393

/*
394
395
396
397
398
399
400
401
  Given a desired period (in ns),
  return the proper counter value (divider-1) for the internal clock.
  Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
	return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
402

403
404
405
406
407
408
/*
  Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
					 unsigned int comediChan, int chanIndex)
{				/* index in channel list */
409
	const struct rtdBoard *thisboard = comedi_board(dev);
410
	struct rtdPrivate *devpriv = dev->private;
411
412
	unsigned int chan, range, aref;
	unsigned short r = 0;
413

414
415
416
	chan = CR_CHAN(comediChan);
	range = CR_RANGE(comediChan);
	aref = CR_AREF(comediChan);
417

418
	r |= chan & 0xf;
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
	/* Note: we also setup the channel list bipolar flag array */
	if (range < thisboard->range10Start) {	/* first batch are +-5 */
		r |= 0x000;	/* +-5 range */
		r |= (range & 0x7) << 4;	/* gain */
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
	} else if (range < thisboard->rangeUniStart) {	/* second batch are +-10 */
		r |= 0x100;	/* +-10 range */
		/* gain */
		r |= ((range - thisboard->range10Start) & 0x7) << 4;
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
	} else {		/* last batch is +10 */
		r |= 0x200;	/* +10 range */
		/* gain */
		r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
		CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
	}
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
	switch (aref) {
	case AREF_GROUND:	/* on-board ground */
		break;

	case AREF_COMMON:
		r |= 0x80;	/* ref external analog common */
		break;

	case AREF_DIFF:
		r |= 0x400;	/* differential inputs */
		break;

	case AREF_OTHER:	/* ??? */
		break;
	}
	/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
	   chan, range, aref, r); */
	return r;
}

/*
  Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
				      unsigned int n_chan, unsigned int *list)
{
463
464
	struct rtdPrivate *devpriv = dev->private;

465
466
	if (n_chan > 1) {	/* setup channel gain table */
		int ii;
467
468

		writel(0, devpriv->las0 + LAS0_CGT_CLEAR);
469
		writel(1, devpriv->las0 + LAS0_CGT_ENABLE);
470
		for (ii = 0; ii < n_chan; ii++) {
471
472
			writel(rtdConvertChanGain(dev, list[ii], ii),
				devpriv->las0 + LAS0_CGT_WRITE);
473
		}
474
	} else {		/* just use the channel gain latch */
475
		writel(0, devpriv->las0 + LAS0_CGT_ENABLE);
476
477
		writel(rtdConvertChanGain(dev, list[0], 0),
			devpriv->las0 + LAS0_CGL_WRITE);
478
	}
479
480
481
482
483
484
}

/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
485
	struct rtdPrivate *devpriv = dev->private;
486
487
488
489
490
	unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
	unsigned i;
	static const unsigned limit = 0x2000;
	unsigned fifo_size = 0;

491
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
492
	rtd_load_channelgain_list(dev, 1, &chanspec);
493
	/* ADC conversion trigger source: SOFTWARE */
494
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
495
496
497
498
	/* convert  samples */
	for (i = 0; i < limit; ++i) {
		unsigned fifo_status;
		/* trigger conversion */
499
		writew(0, devpriv->las0 + LAS0_ADC);
500
		udelay(1);
501
		fifo_status = readl(devpriv->las0 + LAS0_ADC);
502
503
504
		if ((fifo_status & FS_ADC_HEMPTY) == 0) {
			fifo_size = 2 * i;
			break;
505
		}
506
507
	}
	if (i == limit) {
508
		dev_info(dev->class_dev, "failed to probe fifo size.\n");
509
510
		return -EIO;
	}
511
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
512
	if (fifo_size != 0x400 && fifo_size != 0x2000) {
513
514
515
		dev_info(dev->class_dev,
			 "unexpected fifo size of %i, expected 1024 or 8192.\n",
			 fifo_size);
516
		return -EIO;
517
	}
518
519
	return fifo_size;
}
520

521
522
523
524
/*
  "instructions" read/write data in "one-shot" or "software-triggered"
  mode (simplest case).
  This doesn't use interrupts.
525

526
527
528
529
530
531
532
  Note, we don't do any settling delays.  Use a instruction list to
  select, delay, then read.
 */
static int rtd_ai_rinsn(struct comedi_device *dev,
			struct comedi_subdevice *s, struct comedi_insn *insn,
			unsigned int *data)
{
533
	struct rtdPrivate *devpriv = dev->private;
534
535
	int n, ii;
	int stat;
536

537
	/* clear any old fifo data */
538
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
539

540
541
	/* write channel to multiplexer and clear channel gain table */
	rtd_load_channelgain_list(dev, 1, &insn->chanspec);
542

543
	/* ADC conversion trigger source: SOFTWARE */
544
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
545

546
547
548
549
	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		s16 d;
		/* trigger conversion */
550
		writew(0, devpriv->las0 + LAS0_ADC);
551
552

		for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
553
			stat = readl(devpriv->las0 + LAS0_ADC);
554
555
556
557
558
559
560
561
562
563
564
565
			if (stat & FS_ADC_NOT_EMPTY)	/* 1 -> not empty */
				break;
			WAIT_QUIETLY;
		}
		if (ii >= RTD_ADC_TIMEOUT) {
			DPRINTK
			    ("rtd520: Error: ADC never finished! FifoStatus=0x%x\n",
			     stat ^ 0x6666);
			return -ETIMEDOUT;
		}

		/* read data */
566
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
567
568
569
570
571
572
573
		/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
			/* convert to comedi unsigned data */
			data[n] = d + 2048;
		else
			data[n] = d;
574
575
	}

576
577
578
	/* return the number of samples read/written */
	return n;
}
579

580
581
582
/*
  Get what we know is there.... Fast!
  This uses 1/2 the bus cycles of read_dregs (below).
583

584
585
586
587
588
  The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
		     int count)
{
589
	struct rtdPrivate *devpriv = dev->private;
590
	int ii;
591

592
593
594
	for (ii = 0; ii < count; ii++) {
		short sample;
		s16 d;
595

596
		if (0 == devpriv->aiCount) {	/* done */
597
			d = readw(devpriv->las1 + LAS1_ADC_FIFO);
598
599
600
			continue;
		}
#if 0
601
		if (!(readl(devpriv->las0 + LAS0_ADC) & FS_ADC_NOT_EMPTY)) {
602
603
604
605
606
			DPRINTK("comedi: READ OOPS on %d of %d\n", ii + 1,
				count);
			break;
		}
#endif
607
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
608

609
610
611
612
613
614
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
615

616
617
		if (!comedi_buf_put(s->async, sample))
			return -1;
618

619
620
621
622
623
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
624

625
626
627
628
629
/*
  unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
630
631
	struct rtdPrivate *devpriv = dev->private;

632
	while (readl(devpriv->las0 + LAS0_ADC) & FS_ADC_NOT_EMPTY) {
633
		short sample;
634
		s16 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
635

636
637
638
		if (0 == devpriv->aiCount) {	/* done */
			continue;	/* read rest */
		}
639

640
641
642
643
644
645
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
646

647
648
		if (!comedi_buf_put(s->async, sample))
			return -1;
649

650
651
652
653
654
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
655
656

#ifdef USE_DMA
657
658
659
660
661
/*
  Terminate a DMA transfer and wait for everything to quiet down
*/
void abort_dma(struct comedi_device *dev, unsigned int channel)
{				/* DMA channel 0, 1 */
662
	struct rtdPrivate *devpriv = dev->private;
663
664
665
666
	unsigned long dma_cs_addr;	/* the control/status register */
	uint8_t status;
	unsigned int ii;
	/* unsigned long flags; */
667

668
669
	dma_cs_addr = (unsigned long)devpriv->lcfg
	    + ((channel == 0) ? LCFG_DMACSR0 : LCFG_DMACSR1);
670

671
672
	/*  spinlock for plx dma control/status reg */
	/* spin_lock_irqsave( &dev->spinlock, flags ); */
673

674
675
676
677
678
679
680
	/*  abort dma transfer if necessary */
	status = readb(dma_cs_addr);
	if ((status & PLX_DMA_EN_BIT) == 0) {	/* not enabled (Error?) */
		DPRINTK("rtd520: AbortDma on non-active channel %d (0x%x)\n",
			channel, status);
		goto abortDmaExit;
	}
681

682
683
684
685
686
687
688
689
690
	/* wait to make sure done bit is zero (needed?) */
	for (ii = 0; (status & PLX_DMA_DONE_BIT) && ii < RTD_DMA_TIMEOUT; ii++) {
		WAIT_QUIETLY;
		status = readb(dma_cs_addr);
	}
	if (status & PLX_DMA_DONE_BIT) {
		printk("rtd520: Timeout waiting for dma %i done clear\n",
		       channel);
		goto abortDmaExit;
691
692
	}

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
	/* disable channel (required) */
	writeb(0, dma_cs_addr);
	udelay(1);		/* needed?? */
	/* set abort bit for channel */
	writeb(PLX_DMA_ABORT_BIT, dma_cs_addr);

	/*  wait for dma done bit to be set */
	status = readb(dma_cs_addr);
	for (ii = 0;
	     (status & PLX_DMA_DONE_BIT) == 0 && ii < RTD_DMA_TIMEOUT; ii++) {
		status = readb(dma_cs_addr);
		WAIT_QUIETLY;
	}
	if ((status & PLX_DMA_DONE_BIT) == 0) {
		printk("rtd520: Timeout waiting for dma %i done set\n",
		       channel);
709
710
	}

711
712
713
abortDmaExit:
	/* spin_unlock_irqrestore( &dev->spinlock, flags ); */
}
714

715
716
717
718
719
720
/*
  Process what is in the DMA transfer buffer and pass to comedi
  Note: this is not re-entrant
*/
static int ai_process_dma(struct comedi_device *dev, struct comedi_subdevice *s)
{
721
	struct rtdPrivate *devpriv = dev->private;
722
723
	int ii, n;
	s16 *dp;
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
	if (devpriv->aiCount == 0)	/* transfer already complete */
		return 0;

	dp = devpriv->dma0Buff[devpriv->dma0Offset];
	for (ii = 0; ii < devpriv->fifoLen / 2;) {	/* convert samples */
		short sample;

		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			sample = (*dp >> 3) + 2048;	/* convert to comedi unsigned data */
		else
			sample = *dp >> 3;	/* low 3 bits are marker lines */

		*dp++ = sample;	/* put processed value back */

		if (++s->async->cur_chan >= s->async->cmd.chanlist_len)
			s->async->cur_chan = 0;

		++ii;		/* number ready to transfer */
		if (devpriv->aiCount > 0) {	/* < 0, means read forever */
			if (--devpriv->aiCount == 0) {	/* done */
				/*DPRINTK ("rtd520: Final %d samples\n", ii); */
				break;
			}
748
749
		}
	}
750
751
752
753
754
755
756
757
758

	/* now pass the whole array to the comedi buffer */
	dp = devpriv->dma0Buff[devpriv->dma0Offset];
	n = comedi_buf_write_alloc(s->async, ii * sizeof(s16));
	if (n < (ii * sizeof(s16))) {	/* any residual is an error */
		DPRINTK("rtd520:ai_process_dma buffer overflow %d samples!\n",
			ii - (n / sizeof(s16)));
		s->async->events |= COMEDI_CB_ERROR;
		return -1;
759
	}
760
761
	comedi_buf_memcpy_to(s->async, 0, dp, n);
	comedi_buf_write_free(s->async, n);
762

763
764
765
766
	/*
	 * always at least 1 scan -- 1/2 FIFO is larger than our max scan list
	 */
	s->async->events |= COMEDI_CB_BLOCK | COMEDI_CB_EOS;
767

768
769
770
771
772
773
	if (++devpriv->dma0Offset >= DMA_CHAIN_COUNT) {	/* next buffer */
		devpriv->dma0Offset = 0;
	}
	return 0;
}
#endif /* USE_DMA */
774

775
776
777
778
779
780
781
782
783
/*
  Handle all rtd520 interrupts.
  Runs atomically and is never re-entered.
  This is a "slow handler";  other interrupts may be active.
  The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq,	/* interrupt number (ignored) */
				 void *d)
{				/* our data *//* cpu context (ignored) */
784
	struct comedi_device *dev = d;
785
	struct comedi_subdevice *s = &dev->subdevices[0];
786
	struct rtdPrivate *devpriv = dev->private;
787
	u32 overrun;
788
789
	u16 status;
	u16 fifoStatus;
790

791
792
	if (!dev->attached)
		return IRQ_NONE;
793

794
	devpriv->intCount++;	/* DEBUG statistics */
795

796
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
797
798
799
800
801
	/* check for FIFO full, this automatically halts the ADC! */
	if (!(fifoStatus & FS_ADC_NOT_FULL)) {	/* 0 -> full */
		DPRINTK("rtd520: FIFO full! fifo_status=0x%x\n", (fifoStatus ^ 0x6666) & 0x7777);	/* should be all 0s */
		goto abortTransfer;
	}
802
#ifdef USE_DMA
803
	if (devpriv->flags & DMA0_ACTIVE) {	/* Check DMA */
804
		u32 istatus = readl(devpriv->lcfg + LCFG_ITCSR);
805

806
807
808
809
810
		if (istatus & ICS_DMA0_A) {
			if (ai_process_dma(dev, s) < 0) {
				DPRINTK
				    ("rtd520: comedi read buffer overflow (DMA) with %ld to go!\n",
				     devpriv->aiCount);
811
812
813
814
				devpriv->dma0Control &= ~PLX_DMA_START_BIT;
				devpriv->dma0Control |= PLX_CLEAR_DMA_INTR_BIT;
				writeb(devpriv->dma0Control,
					devpriv->lcfg + LCFG_DMACSR0);
815
				goto abortTransfer;
816
			}
817
818
819

			/*DPRINTK ("rtd520: DMA transfer: %ld to go, istatus %x\n",
			   devpriv->aiCount, istatus); */
820
821
822
823
			devpriv->dma0Control &= ~PLX_DMA_START_BIT;
			devpriv->dma0Control |= PLX_CLEAR_DMA_INTR_BIT;
			writeb(devpriv->dma0Control,
				devpriv->lcfg + LCFG_DMACSR0);
824
825
826
827
828
829
830
			if (0 == devpriv->aiCount) {	/* counted down */
				DPRINTK("rtd520: Samples Done (DMA).\n");
				goto transferDone;
			}
			comedi_event(dev, s);
		} else {
			/*DPRINTK ("rtd520: No DMA ready: istatus %x\n", istatus); */
831
		}
832
833
	}
	/* Fall through and check for other interrupt sources */
834
#endif /* USE_DMA */
835

836
	status = readw(devpriv->las0 + LAS0_IT);
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
	/* if interrupt was not caused by our board, or handled above */
	if (0 == status)
		return IRQ_HANDLED;

	if (status & IRQM_ADC_ABOUT_CNT) {	/* sample count -> read FIFO */
		/* since the priority interrupt controller may have queued a sample
		   counter interrupt, even though we have already finished,
		   we must handle the possibility that there is no data here */
		if (!(fifoStatus & FS_ADC_HEMPTY)) {	/* 0 -> 1/2 full */
			/*DPRINTK("rtd520: Sample int, reading 1/2FIFO.  fifo_status 0x%x\n",
			   (fifoStatus ^ 0x6666) & 0x7777); */
			if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0) {
				DPRINTK
				    ("rtd520: comedi read buffer overflow (1/2FIFO) with %ld to go!\n",
				     devpriv->aiCount);
				goto abortTransfer;
			}
			if (0 == devpriv->aiCount) {	/* counted down */
				DPRINTK("rtd520: Samples Done (1/2). fifo_status was 0x%x\n", (fifoStatus ^ 0x6666) & 0x7777);	/* should be all 0s */
				goto transferDone;
			}
			comedi_event(dev, s);
		} else if (devpriv->transCount > 0) {	/* read often */
			/*DPRINTK("rtd520: Sample int, reading %d  fifo_status 0x%x\n",
			   devpriv->transCount, (fifoStatus ^ 0x6666) & 0x7777); */
			if (fifoStatus & FS_ADC_NOT_EMPTY) {	/* 1 -> not empty */
				if (ai_read_n(dev, s, devpriv->transCount) < 0) {
					DPRINTK
					    ("rtd520: comedi read buffer overflow (N) with %ld to go!\n",
					     devpriv->aiCount);
					goto abortTransfer;
				}
				if (0 == devpriv->aiCount) {	/* counted down */
					DPRINTK
					    ("rtd520: Samples Done (N). fifo_status was 0x%x\n",
					     (fifoStatus ^ 0x6666) & 0x7777);
					goto transferDone;
				}
				comedi_event(dev, s);
			}
		} else {	/* wait for 1/2 FIFO (old) */
			DPRINTK
			    ("rtd520: Sample int.  Wait for 1/2. fifo_status 0x%x\n",
			     (fifoStatus ^ 0x6666) & 0x7777);
881
		}
882
883
	} else {
		DPRINTK("rtd520: unknown interrupt source!\n");
884
885
	}

886
887
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
	if (overrun) {
888
889
		DPRINTK
		    ("rtd520: Interrupt overrun with %ld to go! over_status=0x%x\n",
890
		     devpriv->aiCount, overrun);
891
892
		goto abortTransfer;
	}
893

894
	/* clear the interrupt */
895
896
	devpriv->intClearMask = status;
	writew(devpriv->intClearMask, devpriv->las0 + LAS0_CLEAR);
897
	readw(devpriv->las0 + LAS0_CLEAR);
898
	return IRQ_HANDLED;
899

900
abortTransfer:
901
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
902
903
904
	s->async->events |= COMEDI_CB_ERROR;
	devpriv->aiCount = 0;	/* stop and don't transfer any more */
	/* fall into transferDone */
905

906
transferDone:
907
	/* pacer stop source: SOFTWARE */
908
	writel(0, devpriv->las0 + LAS0_PACER_STOP);
909
	writel(0, devpriv->las0 + LAS0_PACER);	/* stop pacer */
910
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
911
912
	devpriv->intMask = 0;
	writew(devpriv->intMask, devpriv->las0 + LAS0_IT);
913
914
#ifdef USE_DMA
	if (devpriv->flags & DMA0_ACTIVE) {
915
916
		writel(readl(devpriv->lcfg + LCFG_ITCSR) & ~ICS_DMA0_E,
			devpriv->lcfg + LCFG_ITCSR);
917
918
919
920
921
922
923
		abort_dma(dev, 0);
		devpriv->flags &= ~DMA0_ACTIVE;
		/* if Using DMA, then we should have read everything by now */
		if (devpriv->aiCount > 0) {
			DPRINTK("rtd520: Lost DMA data! %ld remain\n",
				devpriv->aiCount);
		}
924
	}
925
#endif /* USE_DMA */
926

927
	if (devpriv->aiCount > 0) {	/* there shouldn't be anything left */
928
		fifoStatus = readl(devpriv->las0 + LAS0_ADC);
929
930
931
		DPRINTK("rtd520: Finishing up. %ld remain, fifoStat=%x\n", devpriv->aiCount, (fifoStatus ^ 0x6666) & 0x7777);	/* should read all 0s */
		ai_read_dregs(dev, s);	/* read anything left in FIFO */
	}
932

933
934
	s->async->events |= COMEDI_CB_EOA;	/* signal end to comedi */
	comedi_event(dev, s);
935

936
	/* clear the interrupt */
937
	status = readw(devpriv->las0 + LAS0_IT);
938
939
	devpriv->intClearMask = status;
	writew(devpriv->intClearMask, devpriv->las0 + LAS0_CLEAR);
940
	readw(devpriv->las0 + LAS0_CLEAR);
941

942
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
943
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
944
945
	DPRINTK
	    ("rtd520: Acquisition complete. %ld ints, intStat=%x, overStat=%x\n",
946
	     devpriv->intCount, status, overrun);
947
948

	return IRQ_HANDLED;
949
950
}

951
#if 0
952
/*
953
  return the number of samples available
954
*/
955
static int rtd_ai_poll(struct comedi_device *dev, struct comedi_subdevice *s)
956
{
957
958
959
	/* TODO: This needs to mask interrupts, read_dregs, and then re-enable */
	/* Not sure what to do if DMA is active */
	return s->async->buf_write_count - s->async->buf_read_count;
960
}
961
#endif
962

963
964
965
/*
  cmdtest tests a particular command to see if it is valid.
  Using the cmdtest ioctl, a user can create a valid cmd
966
  and then have it executed by the cmd ioctl (asynchronously).
967
968
969
970
971
972
973

  cmdtest returns 1,2,3,4 or 0, depending on which tests
  the command passes.
*/

static int rtd_ai_cmdtest(struct comedi_device *dev,
			  struct comedi_subdevice *s, struct comedi_cmd *cmd)
974
{
975
976
	int err = 0;
	int tmp;
977

978
	/* Step 1 : check if triggers are trivially valid */
979

980
981
982
983
984
985
	err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
986
987
988
989

	if (err)
		return 1;

990
	/* Step 2a : make sure trigger sources are unique */
991

992
993
994
995
996
	err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
	err |= cfc_check_trigger_is_unique(cmd->convert_src);
	err |= cfc_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */
997

998
999
	if (err)
		return 2;
1000

For faster browsing, not all history is shown. View entire blame