dm-thin.c 111 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison-v1.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
207

	/*
	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
	 */
	PM_OUT_OF_METADATA_SPACE,
208
	PM_READ_ONLY,		/* metadata may not be changed */
209

210
211
212
	PM_FAIL,		/* all I/O fails */
};

213
struct pool_features {
214
215
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
216
217
218
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
219
	bool error_if_no_space:1;
220
221
};

222
223
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225
226
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

227
228
#define CELL_SORT_ARRAY_SIZE 8192

229
230
231
232
233
234
235
236
237
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
238
	uint32_t sectors_per_block;
239
	int sectors_per_block_shift;
240

241
	struct pool_features pf;
242
	bool low_water_triggered:1;	/* A dm event has been sent */
243
	bool suspended:1;
244
	bool out_of_data_space:1;
245

246
	struct dm_bio_prison *prison;
247
248
249
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
250
	struct throttle throttle;
251
	struct work_struct worker;
252
	struct delayed_work waker;
253
	struct delayed_work no_space_timeout;
254

255
	unsigned long last_commit_jiffies;
256
	unsigned ref_count;
257
258
259
260

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
261
	struct list_head prepared_discards;
262
	struct list_head prepared_discards_pt2;
263
	struct list_head active_thins;
264

265
266
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
267

Mike Snitzer's avatar
Mike Snitzer committed
268
	struct dm_thin_new_mapping *next_mapping;
269
	mempool_t *mapping_pool;
270
271
272
273

	process_bio_fn process_bio;
	process_bio_fn process_discard;

274
275
276
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

277
278
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
279
	process_mapping_fn process_prepared_discard_pt2;
280

281
	struct dm_bio_prison_cell **cell_sort_array;
282
283
};

284
static enum pool_mode get_pool_mode(struct pool *pool);
285
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
286

287
288
289
290
291
292
293
294
295
296
297
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
298
299
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
300
301
302
303
304
305
};

/*
 * Target context for a thin.
 */
struct thin_c {
306
	struct list_head list;
307
	struct dm_dev *pool_dev;
308
	struct dm_dev *origin_dev;
309
	sector_t origin_size;
310
311
312
313
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
314
315
	struct mapped_device *thin_md;

316
	bool requeue_mode:1;
317
	spinlock_t lock;
318
	struct list_head deferred_cells;
319
320
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
321
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
322
323
324
325
326
327
328

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
329
330
331
332
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
333
334
335
336
337
338
339
340
341
342
343
344
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*----------------------------------------------------------------*/

struct discard_op {
	struct thin_c *tc;
	struct blk_plug plug;
	struct bio *parent_bio;
	struct bio *bio;
};

static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
{
	BUG_ON(!parent);

	op->tc = tc;
	blk_start_plug(&op->plug);
	op->parent_bio = parent;
	op->bio = NULL;
}

static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
Joe Thornber's avatar
Joe Thornber committed
365
{
366
	struct thin_c *tc = op->tc;
Joe Thornber's avatar
Joe Thornber committed
367
368
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
369

370
	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
371
				      GFP_NOWAIT, 0, &op->bio);
372
373
374
375
376
377
378
379
380
381
}

static void end_discard(struct discard_op *op, int r)
{
	if (op->bio) {
		/*
		 * Even if one of the calls to issue_discard failed, we
		 * need to wait for the chain to complete.
		 */
		bio_chain(op->bio, op->parent_bio);
Mike Christie's avatar
Mike Christie committed
382
		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
383
		submit_bio(op->bio);
384
	}
Joe Thornber's avatar
Joe Thornber committed
385

386
387
388
389
390
391
	blk_finish_plug(&op->plug);

	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
392
393
	if (r && !op->parent_bio->bi_status)
		op->parent_bio->bi_status = errno_to_blk_status(r);
394
	bio_endio(op->parent_bio);
Joe Thornber's avatar
Joe Thornber committed
395
396
397
398
}

/*----------------------------------------------------------------*/

399
400
401
402
403
404
405
406
407
408
409
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

441
442
443
444
445
446
447
448
449
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

450
451
452
453
454
455
456
457
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

458
static void cell_error_with_code(struct pool *pool,
459
		struct dm_bio_prison_cell *cell, blk_status_t error_code)
460
{
461
	dm_cell_error(pool->prison, cell, error_code);
462
463
464
	dm_bio_prison_free_cell(pool->prison, cell);
}

465
static blk_status_t get_pool_io_error_code(struct pool *pool)
466
{
467
	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
468
469
}

470
471
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
472
	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
473
474
}

475
476
477
478
479
480
481
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
482
	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
483
484
}

485
486
/*----------------------------------------------------------------*/

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
547
struct dm_thin_endio_hook {
548
	struct thin_c *tc;
549
550
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
551
	struct dm_thin_new_mapping *overwrite_mapping;
552
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
553
	struct dm_bio_prison_cell *cell;
554
555
};

556
557
558
559
560
561
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

562
static void error_bio_list(struct bio_list *bios, blk_status_t error)
563
564
{
	struct bio *bio;
565

566
	while ((bio = bio_list_pop(bios))) {
567
		bio->bi_status = error;
568
569
		bio_endio(bio);
	}
570
571
}

572
573
static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
		blk_status_t error)
574
{
575
	struct bio_list bios;
576
	unsigned long flags;
577
578

	bio_list_init(&bios);
579

580
	spin_lock_irqsave(&tc->lock, flags);
581
	__merge_bio_list(&bios, master);
582
	spin_unlock_irqrestore(&tc->lock, flags);
583

584
	error_bio_list(&bios, error);
585
586
}

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

604
605
static void requeue_io(struct thin_c *tc)
{
606
	struct bio_list bios;
607
	unsigned long flags;
608
609
610

	bio_list_init(&bios);

611
	spin_lock_irqsave(&tc->lock, flags);
612
613
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
614
	spin_unlock_irqrestore(&tc->lock, flags);
615

616
	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617
	requeue_deferred_cells(tc);
618
619
}

620
static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621
622
623
624
625
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
626
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627
628
629
	rcu_read_unlock();
}

630
631
static void error_retry_list(struct pool *pool)
{
632
	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633
634
}

635
636
637
638
639
640
641
642
643
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
644
	struct pool *pool = tc->pool;
645
	sector_t block_nr = bio->bi_iter.bi_sector;
646

647
648
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
649
	else
650
		(void) sector_div(block_nr, pool->sectors_per_block);
651
652

	return block_nr;
653
654
}

Joe Thornber's avatar
Joe Thornber committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

683
684
685
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
686
	sector_t bi_sector = bio->bi_iter.bi_sector;
687

688
	bio_set_dev(bio, tc->pool_dev->bdev);
689
	if (block_size_is_power_of_two(pool))
690
691
692
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
693
	else
694
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695
				 sector_div(bi_sector, pool->sectors_per_block);
696
697
}

698
699
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
700
	bio_set_dev(bio, tc->origin_dev->bdev);
701
702
}

703
704
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
705
	return op_is_flush(bio->bi_opf) &&
706
707
708
		dm_thin_changed_this_transaction(tc->td);
}

709
710
711
712
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

Mike Christie's avatar
Mike Christie committed
713
	if (bio_op(bio) == REQ_OP_DISCARD)
714
715
		return;

716
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717
718
719
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

720
static void issue(struct thin_c *tc, struct bio *bio)
721
722
723
724
{
	struct pool *pool = tc->pool;
	unsigned long flags;

725
726
727
728
729
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

730
	/*
731
732
733
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
734
	 */
735
736
737
738
739
740
741
742
743
744
745
746
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
747
748
}

749
750
751
752
753
754
755
756
757
758
759
760
761
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

762
763
764
765
766
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
767
struct dm_thin_new_mapping {
768
769
	struct list_head list;

770
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
771
	bool maybe_shared:1;
772

773
774
775
776
777
778
779
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

780
	blk_status_t status;
781
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
782
	dm_block_t virt_begin, virt_end;
783
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
784
	struct dm_bio_prison_cell *cell;
785
786
787
788
789
790
791
792
793
794
795

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

796
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797
798
799
{
	struct pool *pool = m->tc->pool;

800
	if (atomic_dec_and_test(&m->prepare_actions)) {
801
		list_add_tail(&m->list, &pool->prepared_mappings);
802
803
804
805
		wake_worker(pool);
	}
}

806
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807
808
809
810
811
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
812
	__complete_mapping_preparation(m);
813
814
815
	spin_unlock_irqrestore(&pool->lock, flags);
}

816
817
818
819
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

820
	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821
822
823
	complete_mapping_preparation(m);
}

824
static void overwrite_endio(struct bio *bio)
825
{
826
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
827
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
828

829
830
	bio->bi_end_io = m->saved_bi_end_io;

831
	m->status = bio->bi_status;
832
	complete_mapping_preparation(m);
833
834
835
836
837
838
839
840
841
842
843
844
845
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
846
847
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
848
 */
849
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850
851
852
853
{
	struct pool *pool = tc->pool;
	unsigned long flags;

854
855
856
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
857
858
859
860

	wake_worker(pool);
}

861
862
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

863
864
865
866
867
868
869
870
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
871
{
872
	struct remap_info *info = context;
873
874
	struct bio *bio;

875
	while ((bio = bio_list_pop(&cell->bios))) {
876
		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877
			bio_list_add(&info->defer_bios, bio);
878
		else {
879
880
881
882
883
884
885
886
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
887
888
889
890
		}
	}
}

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

917
918
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
919
	cell_error(m->tc->pool, m->cell);
920
921
922
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
923

Mike Snitzer's avatar
Mike Snitzer committed
924
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925
926
{
	struct thin_c *tc = m->tc;
927
	struct pool *pool = tc->pool;
928
	struct bio *bio = m->bio;
929
930
	int r;

931
	if (m->status) {
932
		cell_error(pool, m->cell);
933
		goto out;
934
935
936
937
938
939
940
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
941
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942
	if (r) {
943
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
944
		cell_error(pool, m->cell);
945
		goto out;
946
947
948
949
950
951
952
953
954
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
955
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956
		bio_endio(bio);
957
958
959
960
961
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
962

963
out:
964
	list_del(&m->list);
965
	mempool_free(m, pool->mapping_pool);
966
967
}

Joe Thornber's avatar
Joe Thornber committed
968
969
970
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
971
972
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
973
974
975
976
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
977

Joe Thornber's avatar
Joe Thornber committed
978
979
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
980
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
981
982
983
984
985
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
986
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
987
988
989
990
991
992
993
994
995
996
997
998
999
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
1000
		bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1001

1002
	cell_defer_no_holder(tc, m->cell);
1003
1004
1005
	mempool_free(m, tc->pool->mapping_pool);
}

1006
1007
/*----------------------------------------------------------------*/

1008
1009
static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
						   struct bio *discard_parent)
1010
{
Joe Thornber's avatar
Joe Thornber committed
1011
1012
1013
1014
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
1015
	int r = 0;
Joe Thornber's avatar
Joe Thornber committed
1016
	bool used = true;
1017
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1018
1019
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020
	struct discard_op op;
Joe Thornber's avatar
Joe Thornber committed
1021

1022
	begin_discard(&op, tc, discard_parent);
Joe Thornber's avatar
Joe Thornber committed
1023
1024
1025
1026
1027
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
1028
				goto out;
1029

Joe Thornber's avatar
Joe Thornber committed
1030
1031
			if (!used)
				break;
1032
		}
Joe Thornber's avatar
Joe Thornber committed
1033

Joe Thornber's avatar
Joe Thornber committed
1034
1035
1036
1037
1038
1039
1040
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
1041
				goto out;
Joe Thornber's avatar
Joe Thornber committed
1042
1043
1044
1045
1046

			if (used)
				break;
		}

1047
		r = issue_discard(&op, b, e);
Joe Thornber's avatar
Joe Thornber committed
1048
		if (r)
1049
			goto out;
Joe Thornber's avatar
Joe Thornber committed
1050
1051
1052

		b = e;
	}
1053
1054
out:
	end_discard(&op, r);
Joe Thornber's avatar
Joe Thornber committed
1055
1056
}

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
	list_add_tail(&m->list, &pool->prepared_discards_pt2);
	spin_unlock_irqrestore(&pool->lock, flags);
	wake_worker(pool);
}

static void passdown_endio(struct bio *bio)
{
	/*
	 * It doesn't matter if the passdown discard failed, we still want
	 * to unmap (we ignore err).
	 */
	queue_passdown_pt2(bio->bi_private);
1075
	bio_put(bio);
1076
1077
1078
}

static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079
1080
1081
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1082
	struct pool *pool = tc->pool;
1083
1084
	struct bio *discard_parent;
	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085

1086
1087
1088
1089
1090
	/*
	 * Only this thread allocates blocks, so we can be sure that the
	 * newly unmapped blocks will not be allocated before the end of
	 * the function.
	 */
Joe Thornber's avatar
Joe Thornber committed
1091
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092
	if (r) {
Joe Thornber's avatar
Joe Thornber committed
1093
		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094
		bio_io_error(m->bio);
1095
1096
1097
1098
		cell_defer_no_holder(tc, m->cell);
		mempool_free(m, pool->mapping_pool);
		return;
	}
Joe Thornber's avatar
Joe Thornber committed
1099

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
	/*
	 * Increment the unmapped blocks.  This prevents a race between the
	 * passdown io and reallocation of freed blocks.
	 */
	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
	if (r) {
		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
		bio_io_error(m->bio);
		cell_defer_no_holder(tc, m->cell);
		mempool_free(m, pool->mapping_pool);
		return;
	}

1113
1114
1115
1116
1117
	discard_parent = bio_alloc(GFP_NOIO, 1);
	if (!discard_parent) {
		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
		       dm_device_name(tc->pool->pool_md));
		queue_passdown_pt2(m);
1118
1119

	} else {
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
		discard_parent->bi_end_io = passdown_endio;
		discard_parent->bi_private = m;

		if (m->maybe_shared)
			passdown_double_checking_shared_status(m, discard_parent);
		else {
			struct discard_op op;

			begin_discard(&op, tc, discard_parent);
			r = issue_discard(&op, m->data_block, data_end);
			end_discard(&op, r);
		}
1132
	}
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
}

static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;
	struct pool *pool = tc->pool;

	/*
	 * The passdown has completed, so now we can decrement all those
	 * unmapped blocks.
	 */
	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
				   m->data_block + (m->virt_end - m->virt_begin));
	if (r) {
		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
		bio_io_error(m->bio);
	} else
		bio_endio(m->bio);

Joe Thornber's avatar
Joe Thornber committed
1153
1154
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1155
1156
}

Joe Thornber's avatar
Joe Thornber committed
1157
static void process_prepared(struct pool *pool, struct list_head *head,
1158
			     process_mapping_fn *fn)
1159
1160
1161
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1162
	struct dm_thin_new_mapping *m, *tmp;
1163
1164
1165

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1166
	list_splice_init(head, &maps);
1167
1168
1169
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1170
		(*fn)(m);
1171
1172
1173
1174
1175
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1176
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177
{
1178
1179
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1180
1181
1182
1183
1184
1185
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1205
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206
{
1207
	struct dm_thin_new_mapping *m = pool->next_mapping;
1208
1209
1210

	BUG_ON(!pool->next_mapping);

1211
1212
1213
1214
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1215
1216
	pool->next_mapping = NULL;

1217
	return m;
1218
1219
}

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1237
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1238
				      dm_block_t data_begin,
1239
1240
1241
1242
1243
1244
1245
1246
1247
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1248
	remap_and_issue(tc, bio, data_begin);
1249
1250
}

1251
1252
1253
/*
 * A partial copy also needs to zero the uncopied region.
 */
1254
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1255
1256
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1257
1258
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1259
1260
1261
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1262
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264

	m->tc = tc;
Joe Thornber's avatar