dm-thin.c 84.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13
14

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/list.h>
15
#include <linux/rculist.h>
16
17
18
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
19
#include <linux/rbtree.h>
20
21
22
23
24
25

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
26
#define ENDIO_HOOK_POOL_SIZE 1024
27
28
#define MAPPING_POOL_SIZE 1024
#define PRISON_CELLS 1024
29
#define COMMIT_PERIOD HZ
30

31
32
33
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
66
 * including all devices that share this block.  (see dm_deferred_set code)
67
68
69
70
71
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
72
 * (process_prepared_mapping).  This act of inserting breaks some
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
static void build_data_key(struct dm_thin_device *td,
110
			   dm_block_t b, struct dm_cell_key *key)
111
112
113
114
115
116
117
{
	key->virtual = 0;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
118
			      struct dm_cell_key *key)
119
120
121
122
123
124
125
126
127
128
129
130
131
{
	key->virtual = 1;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

/*----------------------------------------------------------------*/

/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
132
struct dm_thin_new_mapping;
133

134
/*
135
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
136
137
138
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
139
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
140
141
142
143
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

144
struct pool_features {
145
146
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
147
148
149
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
150
	bool error_if_no_space:1;
151
152
};

153
154
155
156
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

157
158
159
160
161
162
163
164
165
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
166
	uint32_t sectors_per_block;
167
	int sectors_per_block_shift;
168

169
	struct pool_features pf;
170
	bool low_water_triggered:1;	/* A dm event has been sent */
171

172
	struct dm_bio_prison *prison;
173
174
175
176
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
	struct work_struct worker;
177
	struct delayed_work waker;
178

179
	unsigned long last_commit_jiffies;
180
	unsigned ref_count;
181
182
183
184

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
185
	struct list_head prepared_discards;
186
	struct list_head active_thins;
187

188
189
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
190

Mike Snitzer's avatar
Mike Snitzer committed
191
	struct dm_thin_new_mapping *next_mapping;
192
	mempool_t *mapping_pool;
193
194
195
196
197
198

	process_bio_fn process_bio;
	process_bio_fn process_discard;

	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
199
200
};

201
static enum pool_mode get_pool_mode(struct pool *pool);
202
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203

204
205
206
207
208
209
210
211
212
213
214
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
215
216
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217
218
219
220
221
222
};

/*
 * Target context for a thin.
 */
struct thin_c {
223
	struct list_head list;
224
	struct dm_dev *pool_dev;
225
	struct dm_dev *origin_dev;
226
227
228
229
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
230
	bool requeue_mode:1;
231
232
233
	spinlock_t lock;
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
234
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
235
236
237
238
};

/*----------------------------------------------------------------*/

239
240
241
242
243
244
245
246
247
248
249
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

289
290
291
292
293
294
static void cell_defer_no_holder_no_free(struct thin_c *tc,
					 struct dm_bio_prison_cell *cell)
{
	struct pool *pool = tc->pool;
	unsigned long flags;

295
296
297
	spin_lock_irqsave(&tc->lock, flags);
	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
298
299
300
301

	wake_worker(pool);
}

302
303
304
305
306
307
308
309
310
static void cell_error(struct pool *pool,
		       struct dm_bio_prison_cell *cell)
{
	dm_cell_error(pool->prison, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

/*----------------------------------------------------------------*/

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
371
struct dm_thin_endio_hook {
372
	struct thin_c *tc;
373
374
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
375
	struct dm_thin_new_mapping *overwrite_mapping;
376
	struct rb_node rb_node;
377
378
};

379
static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
380
381
382
{
	struct bio *bio;
	struct bio_list bios;
383
	unsigned long flags;
384
385

	bio_list_init(&bios);
386

387
	spin_lock_irqsave(&tc->lock, flags);
388
389
	bio_list_merge(&bios, master);
	bio_list_init(master);
390
	spin_unlock_irqrestore(&tc->lock, flags);
391

392
393
	while ((bio = bio_list_pop(&bios)))
		bio_endio(bio, DM_ENDIO_REQUEUE);
394
395
396
397
}

static void requeue_io(struct thin_c *tc)
{
398
399
	requeue_bio_list(tc, &tc->deferred_bio_list);
	requeue_bio_list(tc, &tc->retry_on_resume_list);
400
401
}

402
static void error_thin_retry_list(struct thin_c *tc)
403
404
405
406
407
408
409
{
	struct bio *bio;
	unsigned long flags;
	struct bio_list bios;

	bio_list_init(&bios);

410
411
412
413
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_merge(&bios, &tc->retry_on_resume_list);
	bio_list_init(&tc->retry_on_resume_list);
	spin_unlock_irqrestore(&tc->lock, flags);
414
415
416
417
418

	while ((bio = bio_list_pop(&bios)))
		bio_io_error(bio);
}

419
420
421
422
423
424
425
426
427
428
static void error_retry_list(struct pool *pool)
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
		error_thin_retry_list(tc);
	rcu_read_unlock();
}

429
430
431
432
433
434
435
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

436
437
438
439
440
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

441
442
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
443
	struct pool *pool = tc->pool;
444
	sector_t block_nr = bio->bi_iter.bi_sector;
445

446
447
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
448
	else
449
		(void) sector_div(block_nr, pool->sectors_per_block);
450
451

	return block_nr;
452
453
454
455
456
}

static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
457
	sector_t bi_sector = bio->bi_iter.bi_sector;
458
459

	bio->bi_bdev = tc->pool_dev->bdev;
460
	if (block_size_is_power_of_two(pool))
461
462
463
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
464
	else
465
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
466
				 sector_div(bi_sector, pool->sectors_per_block);
467
468
}

469
470
471
472
473
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

474
475
476
477
478
479
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

480
481
482
483
484
485
486
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

487
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
488
489
490
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

491
static void issue(struct thin_c *tc, struct bio *bio)
492
493
494
495
{
	struct pool *pool = tc->pool;
	unsigned long flags;

496
497
498
499
500
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

501
	/*
502
503
504
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
505
	 */
506
507
508
509
510
511
512
513
514
515
516
517
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
518
519
}

520
521
522
523
524
525
526
527
528
529
530
531
532
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

533
534
535
536
537
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
538
struct dm_thin_new_mapping {
539
540
	struct list_head list;

541
542
543
544
	bool quiesced:1;
	bool prepared:1;
	bool pass_discard:1;
	bool definitely_not_shared:1;
545

546
	int err;
547
548
549
	struct thin_c *tc;
	dm_block_t virt_block;
	dm_block_t data_block;
Mike Snitzer's avatar
Mike Snitzer committed
550
	struct dm_bio_prison_cell *cell, *cell2;
551
552
553
554
555
556
557
558
559
560
561

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

Mike Snitzer's avatar
Mike Snitzer committed
562
static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
563
564
565
{
	struct pool *pool = m->tc->pool;

566
	if (m->quiesced && m->prepared) {
567
		list_add_tail(&m->list, &pool->prepared_mappings);
568
569
570
571
572
573
574
		wake_worker(pool);
	}
}

static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	unsigned long flags;
Mike Snitzer's avatar
Mike Snitzer committed
575
	struct dm_thin_new_mapping *m = context;
576
577
578
579
580
	struct pool *pool = m->tc->pool;

	m->err = read_err || write_err ? -EIO : 0;

	spin_lock_irqsave(&pool->lock, flags);
581
	m->prepared = true;
582
583
584
585
586
587
588
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

static void overwrite_endio(struct bio *bio, int err)
{
	unsigned long flags;
589
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
590
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
591
592
593
594
595
	struct pool *pool = m->tc->pool;

	m->err = err;

	spin_lock_irqsave(&pool->lock, flags);
596
	m->prepared = true;
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
 * This sends the bios in the cell back to the deferred_bios list.
 */
Joe Thornber's avatar
Joe Thornber committed
614
static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
615
616
617
618
{
	struct pool *pool = tc->pool;
	unsigned long flags;

619
620
621
	spin_lock_irqsave(&tc->lock, flags);
	cell_release(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
622
623
624
625
626

	wake_worker(pool);
}

/*
627
 * Same as cell_defer above, except it omits the original holder of the cell.
628
 */
629
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
630
631
632
633
{
	struct pool *pool = tc->pool;
	unsigned long flags;

634
635
636
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
637
638
639
640

	wake_worker(pool);
}

641
642
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
Kent Overstreet's avatar
Kent Overstreet committed
643
	if (m->bio) {
644
		m->bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
645
646
		atomic_inc(&m->bio->bi_remaining);
	}
647
	cell_error(m->tc->pool, m->cell);
648
649
650
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
651

Mike Snitzer's avatar
Mike Snitzer committed
652
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
653
654
{
	struct thin_c *tc = m->tc;
655
	struct pool *pool = tc->pool;
656
657
658
659
	struct bio *bio;
	int r;

	bio = m->bio;
Kent Overstreet's avatar
Kent Overstreet committed
660
	if (bio) {
661
		bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
662
663
		atomic_inc(&bio->bi_remaining);
	}
664
665

	if (m->err) {
666
		cell_error(pool, m->cell);
667
		goto out;
668
669
670
671
672
673
674
675
676
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
	if (r) {
677
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
678
		cell_error(pool, m->cell);
679
		goto out;
680
681
682
683
684
685
686
687
688
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
689
		cell_defer_no_holder(tc, m->cell);
690
691
		bio_endio(bio, 0);
	} else
Joe Thornber's avatar
Joe Thornber committed
692
		cell_defer(tc, m->cell);
693

694
out:
695
	list_del(&m->list);
696
	mempool_free(m, pool->mapping_pool);
697
698
}

699
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
700
701
702
{
	struct thin_c *tc = m->tc;

703
	bio_io_error(m->bio);
704
705
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
706
707
708
709
710
711
	mempool_free(m, tc->pool->mapping_pool);
}

static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
712

713
	inc_all_io_entry(tc->pool, m->bio);
714
715
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
716

Joe Thornber's avatar
Joe Thornber committed
717
	if (m->pass_discard)
718
719
720
721
722
723
724
725
726
		if (m->definitely_not_shared)
			remap_and_issue(tc, m->bio, m->data_block);
		else {
			bool used = false;
			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
				bio_endio(m->bio, 0);
			else
				remap_and_issue(tc, m->bio, m->data_block);
		}
Joe Thornber's avatar
Joe Thornber committed
727
728
729
730
731
732
	else
		bio_endio(m->bio, 0);

	mempool_free(m, tc->pool->mapping_pool);
}

733
734
735
736
737
738
739
static void process_prepared_discard(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_block(tc->td, m->virt_block);
	if (r)
740
		DMERR_LIMIT("dm_thin_remove_block() failed");
741
742
743
744

	process_prepared_discard_passdown(m);
}

Joe Thornber's avatar
Joe Thornber committed
745
static void process_prepared(struct pool *pool, struct list_head *head,
746
			     process_mapping_fn *fn)
747
748
749
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
750
	struct dm_thin_new_mapping *m, *tmp;
751
752
753

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
754
	list_splice_init(head, &maps);
755
756
757
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
758
		(*fn)(m);
759
760
761
762
763
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
764
static int io_overlaps_block(struct pool *pool, struct bio *bio)
765
{
766
767
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
768
769
770
771
772
773
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
793
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
794
{
795
	struct dm_thin_new_mapping *m = pool->next_mapping;
796
797
798

	BUG_ON(!pool->next_mapping);

799
800
801
802
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

803
804
	pool->next_mapping = NULL;

805
	return m;
806
807
808
}

static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
809
810
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
811
			  struct dm_bio_prison_cell *cell, struct bio *bio)
812
813
814
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
815
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
816
817
818
819
820
821

	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_dest;
	m->cell = cell;

822
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
823
		m->quiesced = true;
824
825
826
827
828
829
830
831

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
	if (io_overwrites_block(pool, bio)) {
832
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
833

834
		h->overwrite_mapping = m;
835
836
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
837
		inc_all_io_entry(pool, bio);
838
839
840
841
		remap_and_issue(tc, bio, data_dest);
	} else {
		struct dm_io_region from, to;

842
		from.bdev = origin->bdev;
843
844
845
846
847
848
849
850
851
852
853
		from.sector = data_origin * pool->sectors_per_block;
		from.count = pool->sectors_per_block;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
854
			DMERR_LIMIT("dm_kcopyd_copy() failed");
855
			cell_error(pool, cell);
856
857
858
859
		}
	}
}

860
861
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
862
				   struct dm_bio_prison_cell *cell, struct bio *bio)
863
864
865
866
867
868
869
{
	schedule_copy(tc, virt_block, tc->pool_dev,
		      data_origin, data_dest, cell, bio);
}

static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
870
				   struct dm_bio_prison_cell *cell, struct bio *bio)
871
872
873
874
875
{
	schedule_copy(tc, virt_block, tc->origin_dev,
		      virt_block, data_dest, cell, bio);
}

876
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
877
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
878
879
880
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
881
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
882

883
884
	m->quiesced = true;
	m->prepared = false;
885
886
887
888
889
890
891
892
893
894
	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
895
	if (!pool->pf.zero_new_blocks)
896
897
898
		process_prepared_mapping(m);

	else if (io_overwrites_block(pool, bio)) {
899
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
900

901
		h->overwrite_mapping = m;
902
903
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
904
		inc_all_io_entry(pool, bio);
905
906
907
908
909
910
911
912
913
914
915
916
		remap_and_issue(tc, bio, data_block);
	} else {
		int r;
		struct dm_io_region to;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_block * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
917
			DMERR_LIMIT("dm_kcopyd_zero() failed");
918
			cell_error(pool, cell);
919
920
921
922
		}
	}
}

923
924
925
926
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
927
static int commit(struct pool *pool)
928
929
930
931
932
933
{
	int r;

	if (get_pool_mode(pool) != PM_WRITE)
		return -EINVAL;

934
	r = dm_pool_commit_metadata(pool->pmd);
935
936
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
937
938
939
940

	return r;
}

941
942
943
944
945
946
947
948
949
950
951
952
953
954
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}
}

955
956
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

957
958
959
960
961
962
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	struct pool *pool = tc->pool;

963
	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
964
965
		return -EINVAL;

966
	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
967
968
	if (r) {
		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
969
		return r;
970
	}
971

972
	check_low_water_mark(pool, free_blocks);
973
974

	if (!free_blocks) {
975
976
977
978
		/*
		 * Try to commit to see if that will free up some
		 * more space.
		 */
979
980
981
		r = commit(pool);
		if (r)
			return r;
982

983
		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
984
985
		if (r) {
			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
986
			return r;
987
		}
988

989
		if (!free_blocks) {
990
			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
991
			return -ENOSPC;
992
993
994
995
		}
	}

	r = dm_pool_alloc_data_block(pool->pmd, result);
996
	if (r) {
997
		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
998
		return r;
999
	}
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

	return 0;
}

/*
 * If we have run out of space, queue bios until the device is
 * resumed, presumably after having been reloaded with more space.
 */
static void retry_on_resume(struct bio *bio)
{
1010
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1011
	struct thin_c *tc = h->tc;
1012
1013
	unsigned long flags;

1014
1015
1016
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_add(&tc->retry_on_resume_list, bio);
	spin_unlock_irqrestore(&tc->lock, flags);
1017
1018
}

1019
static bool should_error_unserviceable_bio(struct pool *pool)
1020
{
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
	enum pool_mode m = get_pool_mode(pool);

	switch (m) {
	case PM_WRITE:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
		return true;

	case PM_OUT_OF_DATA_SPACE:
		return pool->pf.error_if_no_space;

	case PM_READ_ONLY:
	case PM_FAIL:
		return true;
	default:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
		return true;
	}
}
1041

1042
1043
1044
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
{
	if (should_error_unserviceable_bio(pool))
1045
		bio_io_error(bio);
1046
1047
	else
		retry_on_resume(bio);
1048
1049
}

1050
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1051
1052
1053
1054
{
	struct bio *bio;
	struct bio_list bios;

1055
1056
1057
1058
1059
	if (should_error_unserviceable_bio(pool)) {
		cell_error(pool, cell);
		return;
	}

1060
	bio_list_init(&bios);
1061
	cell_release(pool, cell, &bios);
1062

1063
1064
1065
1066
1067
1068
	if (should_error_unserviceable_bio(pool))
		while ((bio = bio_list_pop(&bios)))
			bio_io_error(bio);
	else
		while ((bio = bio_list_pop(&bios)))
			retry_on_resume(bio);
1069
1070
}

Joe Thornber's avatar
Joe Thornber committed
1071
1072
1073
static void process_discard(struct thin_c *tc, struct bio *bio)
{
	int r;
1074
	unsigned long flags;
Joe Thornber's avatar
Joe Thornber committed
1075
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1076
	struct dm_bio_prison_cell *cell, *cell2;
1077
	struct dm_cell_key key, key2;
Joe Thornber's avatar
Joe Thornber committed
1078
1079
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;
Mike Snitzer's avatar
Mike Snitzer committed
1080
	struct dm_thin_new_mapping *m;
Joe Thornber's avatar
Joe Thornber committed
1081
1082

	build_virtual_key(tc->td, block, &key);
1083
	if (bio_detain(tc->pool, &key, bio, &cell))
Joe Thornber's avatar
Joe Thornber committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
		return;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		/*
		 * Check nobody is fiddling with this pool block.  This can
		 * happen if someone's in the process of breaking sharing
		 * on this block.
		 */
		build_data_key(tc->td, lookup_result.block, &key2);
1095
		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1096
			cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
			break;
		}

		if (io_overlaps_block(pool, bio)) {
			/*
			 * IO may still be going to the destination block.  We must
			 * quiesce before we can do the removal.
			 */
			m = get_next_mapping(pool);
			m->tc = tc;
1107
1108
			m->pass_discard = pool->pf.discard_passdown;
			m->definitely_not_shared = !lookup_result.shared;
Joe Thornber's avatar
Joe Thornber committed
1109
1110
1111
1112
1113
1114
			m->virt_block = block;
			m->data_block = lookup_result.block;
			m->cell = cell;
			m->cell2 = cell2;
			m->bio = bio;

1115
			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1116
				spin_lock_irqsave(&pool->lock, flags);
1117
				list_add_tail(&m->list, &pool->prepared_discards);
1118
				spin_unlock_irqrestore(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1119
1120
1121
				wake_worker(pool);
			}
		} else {
1122
			inc_all_io_entry(pool, bio);
1123
1124
			cell_defer_no_holder(tc, cell);
			cell_defer_no_holder(tc, cell2);
1125

Joe Thornber's avatar
Joe Thornber committed
1126
			/*
1127
1128
1129
			 * The DM core makes sure that the discard doesn't span
			 * a block boundary.  So we submit the discard of a
			 * partial block appropriately.
Joe Thornber's avatar
Joe Thornber committed
1130
			 */
1131
1132
1133
1134
			if ((!lookup_result.shared) && pool->pf.discard_passdown)
				remap_and_issue(tc, bio, lookup_result.block);
			else
				bio_endio(bio, 0);
Joe Thornber's avatar
Joe Thornber committed
1135
1136
1137
1138
1139
1140
1141
		}
		break;

	case -ENODATA:
		/*
		 * It isn't provisioned, just forget it.
		 */
1142
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1143
1144
1145
1146
		bio_endio(bio, 0);
		break;

	default:
1147
1148
		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
			    __func__, r);
1149
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1150
1151
1152
1153
1154
		bio_io_error(bio);
		break;
	}
}

1155
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1156
			  struct dm_cell_key *key,
1157
			  struct dm_thin_lookup_result *lookup_result,
Mike Snitzer's avatar
Mike Snitzer committed
1158
			  struct dm_bio_prison_cell *cell)
1159
1160
1161
{
	int r;
	dm_block_t data_block;
1162
	struct pool *pool = tc->pool;
1163
1164
1165
1166

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1167
1168
		schedule_internal_copy(tc, block, lookup_result->block,
				       data_block, cell, bio);
1169
1170
1171
		break;

	case -ENOSPC:
1172
		retry_bios_on_resume(pool, cell);
1173
1174
1175
		break;

	default:
1176
1177
		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
			    __func__, r);
1178
		cell_error(pool, cell);
1179
1180
1181
1182
1183
1184
1185
1186
		break;
	}
}

static void process_shared_bio(struct thin_c *tc, struct bio *bio,
			       dm_block_t block,
			       struct dm_thin_lookup_result *lookup_result)
{
Mike Snitzer's avatar
Mike Snitzer committed
1187
	struct dm_bio_prison_cell *cell;
1188
	struct pool *pool = tc->pool;
1189
	struct dm_cell_key key;
1190
1191
1192
1193
1194
1195

	/*
	 * If cell is already occupied, then sharing is already in the process
	 * of being broken so we have nothing further to do here.
	 */
	build_data_key(tc->td, lookup_result->block, &key);
1196
	if (bio_detain(pool, &key, bio, &cell))
1197
1198
		return;

1199
	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1200
1201
		break_sharing(tc, bio, block, &key, lookup_result, cell);
	else {
1202
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1203

1204
		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1205
		inc_all_io_entry(pool, bio);
1206
		cell_defer_no_holder(tc, cell);
1207

1208
1209
1210
1211
1212
		remap_and_issue(tc, bio, lookup_result->block);
	}
}

static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
Mike Snitzer's avatar
Mike Snitzer committed
1213
			    struct dm_bio_prison_cell *cell)
1214
1215
1216
{
	int r;
	dm_block_t data_block;
1217
	struct pool *pool = tc->pool;
1218
1219
1220
1221

	/*
	 * Remap empty bios (flushes) immediately, without provisioning.
	 */
1222
	if (!bio->bi_iter.bi_size) {
1223
		inc_all_io_entry(pool, bio);
1224
		cell_defer_no_holder(tc, cell);
1225

1226
1227
1228
1229
1230
1231
1232
1233
1234
		remap_and_issue(tc, bio, 0);
		return;
	}

	/*
	 * Fill read bios with zeroes and complete them immediately.
	 */
	if (bio_data_dir(bio) == READ) {
		zero_fill_bio(bio);
1235
		cell_defer_no_holder(tc, cell);
1236
1237
1238
1239
1240
1241
1242
		bio_endio(bio, 0);
		return;
	}

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1243
1244
1245
1246
		if (tc->origin_dev)
			schedule_external_copy(tc, block, data_block, cell, bio);
		else
			schedule_zero(tc, block, data_block, cell, bio);
1247
1248
1249
		break;

	case -ENOSPC:
1250
		retry_bios_on_resume(pool, cell);