nouveau_dp.c 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*
 * Copyright 2009 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

#include "drmP.h"
26

27
28
#include "nouveau_drv.h"
#include "nouveau_i2c.h"
29
#include "nouveau_connector.h"
30
#include "nouveau_encoder.h"
31
#include "nouveau_crtc.h"
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/******************************************************************************
 * aux channel util functions
 *****************************************************************************/
#define AUX_DBG(fmt, args...) do {                                             \
	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) {                     \
		NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args);     \
	}                                                                      \
} while (0)
#define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args)

static void
auxch_fini(struct drm_device *dev, int ch)
{
	nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000);
}

static int
auxch_init(struct drm_device *dev, int ch)
{
	const u32 unksel = 1; /* nfi which to use, or if it matters.. */
	const u32 ureq = unksel ? 0x00100000 : 0x00200000;
	const u32 urep = unksel ? 0x01000000 : 0x02000000;
	u32 ctrl, timeout;

	/* wait up to 1ms for any previous transaction to be done... */
	timeout = 1000;
	do {
		ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
		udelay(1);
		if (!timeout--) {
			AUX_ERR("begin idle timeout 0x%08x", ctrl);
			return -EBUSY;
		}
	} while (ctrl & 0x03010000);

	/* set some magic, and wait up to 1ms for it to appear */
	nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq);
	timeout = 1000;
	do {
		ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
		udelay(1);
		if (!timeout--) {
			AUX_ERR("magic wait 0x%08x\n", ctrl);
			auxch_fini(dev, ch);
			return -EBUSY;
		}
	} while ((ctrl & 0x03000000) != urep);

	return 0;
}

static int
auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size)
{
	u32 ctrl, stat, timeout, retries;
	u32 xbuf[4] = {};
	int ret, i;

	AUX_DBG("%d: 0x%08x %d\n", type, addr, size);

	ret = auxch_init(dev, ch);
	if (ret)
		goto out;

	stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50));
	if (!(stat & 0x10000000)) {
		AUX_DBG("sink not detected\n");
		ret = -ENXIO;
		goto out;
	}

	if (!(type & 1)) {
		memcpy(xbuf, data, size);
		for (i = 0; i < 16; i += 4) {
			AUX_DBG("wr 0x%08x\n", xbuf[i / 4]);
			nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]);
		}
	}

	ctrl  = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
	ctrl &= ~0x0001f0ff;
	ctrl |= type << 12;
	ctrl |= size - 1;
	nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr);

	/* retry transaction a number of times on failure... */
	ret = -EREMOTEIO;
	for (retries = 0; retries < 32; retries++) {
		/* reset, and delay a while if this is a retry */
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl);
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl);
		if (retries)
			udelay(400);

		/* transaction request, wait up to 1ms for it to complete */
		nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl);

		timeout = 1000;
		do {
			ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
			udelay(1);
			if (!timeout--) {
				AUX_ERR("tx req timeout 0x%08x\n", ctrl);
				goto out;
			}
		} while (ctrl & 0x00010000);

		/* read status, and check if transaction completed ok */
		stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0);
		if (!(stat & 0x000f0f00)) {
			ret = 0;
			break;
		}

		AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat);
	}

	if (type & 1) {
		for (i = 0; i < 16; i += 4) {
			xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i);
			AUX_DBG("rd 0x%08x\n", xbuf[i / 4]);
		}
		memcpy(data, xbuf, size);
	}

out:
	auxch_fini(dev, ch);
	return ret;
}

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
static u32
dp_link_bw_get(struct drm_device *dev, int or, int link)
{
	u32 ctrl = nv_rd32(dev, 0x614300 + (or * 0x800));
	if (!(ctrl & 0x000c0000))
		return 162000;
	return 270000;
}

static int
dp_lane_count_get(struct drm_device *dev, int or, int link)
{
	u32 ctrl = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link));
	switch (ctrl & 0x000f0000) {
	case 0x00010000: return 1;
	case 0x00030000: return 2;
	default:
		return 4;
	}
}

void
nouveau_dp_tu_update(struct drm_device *dev, int or, int link, u32 clk, u32 bpp)
{
	const u32 symbol = 100000;
	int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
	int TU, VTUi, VTUf, VTUa;
	u64 link_data_rate, link_ratio, unk;
	u32 best_diff = 64 * symbol;
	u32 link_nr, link_bw, r;

	/* calculate packed data rate for each lane */
	link_nr = dp_lane_count_get(dev, or, link);
	link_data_rate = (clk * bpp / 8) / link_nr;

	/* calculate ratio of packed data rate to link symbol rate */
	link_bw = dp_link_bw_get(dev, or, link);
	link_ratio = link_data_rate * symbol;
	r = do_div(link_ratio, link_bw);

	for (TU = 64; TU >= 32; TU--) {
		/* calculate average number of valid symbols in each TU */
		u32 tu_valid = link_ratio * TU;
		u32 calc, diff;

		/* find a hw representation for the fraction.. */
		VTUi = tu_valid / symbol;
		calc = VTUi * symbol;
		diff = tu_valid - calc;
		if (diff) {
			if (diff >= (symbol / 2)) {
				VTUf = symbol / (symbol - diff);
				if (symbol - (VTUf * diff))
					VTUf++;

				if (VTUf <= 15) {
					VTUa  = 1;
					calc += symbol - (symbol / VTUf);
				} else {
					VTUa  = 0;
					VTUf  = 1;
					calc += symbol;
				}
			} else {
				VTUa  = 0;
				VTUf  = min((int)(symbol / diff), 15);
				calc += symbol / VTUf;
			}

			diff = calc - tu_valid;
		} else {
			/* no remainder, but the hw doesn't like the fractional
			 * part to be zero.  decrement the integer part and
			 * have the fraction add a whole symbol back
			 */
			VTUa = 0;
			VTUf = 1;
			VTUi--;
		}

		if (diff < best_diff) {
			best_diff = diff;
			bestTU = TU;
			bestVTUa = VTUa;
			bestVTUf = VTUf;
			bestVTUi = VTUi;
			if (diff == 0)
				break;
		}
	}

	if (!bestTU) {
		NV_ERROR(dev, "DP: unable to find suitable config\n");
		return;
	}

	/* XXX close to vbios numbers, but not right */
	unk  = (symbol - link_ratio) * bestTU;
	unk *= link_ratio;
	r = do_div(unk, symbol);
	r = do_div(unk, symbol);
	unk += 6;

	nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2);
	nv_mask(dev, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 |
							     bestVTUf << 16 |
							     bestVTUi << 8 |
							     unk);
}

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
u8 *
nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvbios *bios = &dev_priv->vbios;
	struct bit_entry d;
	u8 *table;
	int i;

	if (bit_table(dev, 'd', &d)) {
		NV_ERROR(dev, "BIT 'd' table not found\n");
		return NULL;
	}

	if (d.version != 1) {
		NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version);
		return NULL;
	}

	table = ROMPTR(bios, d.data[0]);
	if (!table) {
		NV_ERROR(dev, "displayport table pointer invalid\n");
		return NULL;
	}

	switch (table[0]) {
	case 0x20:
	case 0x21:
		break;
	default:
		NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]);
		return NULL;
	}

	for (i = 0; i < table[3]; i++) {
		*entry = ROMPTR(bios, table[table[1] + (i * table[2])]);
		if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0])))
			return table;
	}

	NV_ERROR(dev, "displayport encoder table not found\n");
	return NULL;
}

317
318
319
320
321
/******************************************************************************
 * link training
 *****************************************************************************/
struct dp_state {
	struct dcb_entry *dcb;
322
323
	u8 *table;
	u8 *entry;
324
325
326
327
	int auxch;
	int crtc;
	int or;
	int link;
328
	u8 *dpcd;
329
330
331
332
333
	int link_nr;
	u32 link_bw;
	u8  stat[6];
	u8  conf[4];
};
334

335
336
static void
dp_set_link_config(struct drm_device *dev, struct dp_state *dp)
337
{
338
	struct drm_nouveau_private *dev_priv = dev->dev_private;
339
	int or = dp->or, link = dp->link;
340
	u8 *entry, sink[2];
341
	u32 dp_ctrl;
342

343
	NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw);
344

345
	/* set selected link rate on source */
346
347
	switch (dp->link_bw) {
	case 270000:
348
		nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00040000);
349
350
351
		sink[0] = DP_LINK_BW_2_7;
		break;
	default:
352
		nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00000000);
353
354
355
		sink[0] = DP_LINK_BW_1_62;
		break;
	}
356

357
358
359
360
	/* offset +0x0a of each dp encoder table entry is a pointer to another
	 * table, that has (among other things) pointers to more scripts that
	 * need to be executed, this time depending on link speed.
	 */
361
362
363
364
	entry = ROMPTR(&dev_priv->vbios, dp->entry[10]);
	if (entry) {
		while (dp->link_bw < (ROM16(entry[0]) * 10))
			entry += 4;
365

366
		nouveau_bios_run_init_table(dev, ROM16(entry[2]), dp->dcb, dp->crtc);
367
368
369
	}

	/* configure lane count on the source */
370
371
	dp_ctrl = ((1 << dp->link_nr) - 1) << 16;
	sink[1] = dp->link_nr;
372
	if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) {
373
374
375
		dp_ctrl |= 0x00004000;
		sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
	}
376

377
	nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x001f4000, dp_ctrl);
378

379
	/* inform the sink of the new configuration */
380
	auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2);
381
382
}

383
384
static void
dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 tp)
385
{
386
387
	u8 sink_tp;

388
	NV_DEBUG_KMS(dev, "training pattern %d\n", tp);
389

390
	nv_mask(dev, NV50_SOR_DP_CTRL(dp->or, dp->link), 0x0f000000, tp << 24);
391
392
393
394
395

	auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
	sink_tp &= ~DP_TRAINING_PATTERN_MASK;
	sink_tp |= tp;
	auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
396
397
}

398
399
400
static const u8 nv50_lane_map[] = { 16, 8, 0, 24 };
static const u8 nvaf_lane_map[] = { 24, 16, 8, 0 };

401
static int
402
dp_link_train_commit(struct drm_device *dev, struct dp_state *dp)
403
{
404
	struct drm_nouveau_private *dev_priv = dev->dev_private;
405
	u32 mask = 0, drv = 0, pre = 0, unk = 0;
406
	const u8 *shifts;
407
408
409
410
	int link = dp->link;
	int or = dp->or;
	int i;

411
412
413
414
415
	if (dev_priv->chipset != 0xaf)
		shifts = nv50_lane_map;
	else
		shifts = nvaf_lane_map;

416
417
	for (i = 0; i < dp->link_nr; i++) {
		u8  lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
418
419
		u8 *conf = dp->entry + dp->table[4];
		u8 *last = conf + (dp->entry[4] * dp->table[5]);
420
421
422
423
424
425
426

		while (conf < last) {
			if ((lane  & 3) == conf[0] &&
			    (lane >> 2) == conf[1])
				break;
			conf += 5;
		}
427

428
429
		if (conf == last)
			return -EINVAL;
430

431
432
433
434
435
		dp->conf[i] = (conf[1] << 3) | conf[0];
		if (conf[0] == DP_TRAIN_VOLTAGE_SWING_1200)
			dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED;
		if (conf[1] == DP_TRAIN_PRE_EMPHASIS_9_5)
			dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
436

437
438
439
440
441
442
443
		NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]);

		mask |= 0xff << shifts[i];
		drv  |= conf[2] << shifts[i];
		pre  |= conf[3] << shifts[i];
		unk   = (unk & ~0x0000ff00) | (conf[4] << 8);
		unk  |= 1 << (shifts[i] >> 3);
444
445
	}

446
447
448
449
450
	nv_mask(dev, NV50_SOR_DP_UNK118(or, link), mask, drv);
	nv_mask(dev, NV50_SOR_DP_UNK120(or, link), mask, pre);
	nv_mask(dev, NV50_SOR_DP_UNK130(or, link), 0x0000ff0f, unk);

	return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4);
451
452
}

453
454
static int
dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay)
455
{
456
	int ret;
457

458
	udelay(delay);
459

460
	ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6);
461
	if (ret)
462
		return ret;
463

464
465
466
467
468
	NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n",
		     dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3],
		     dp->stat[4], dp->stat[5]);
	return 0;
}
469

470
471
472
473
474
475
static int
dp_link_train_cr(struct drm_device *dev, struct dp_state *dp)
{
	bool cr_done = false, abort = false;
	int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
	int tries = 0, i;
476

477
	dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1);
478

479
480
481
482
	do {
		if (dp_link_train_commit(dev, dp) ||
		    dp_link_train_update(dev, dp, 100))
			break;
483

484
485
486
487
488
489
490
491
492
493
		cr_done = true;
		for (i = 0; i < dp->link_nr; i++) {
			u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
			if (!(lane & DP_LANE_CR_DONE)) {
				cr_done = false;
				if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED)
					abort = true;
				break;
			}
		}
494

495
496
497
498
499
		if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
			voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
			tries = 0;
		}
	} while (!cr_done && !abort && ++tries < 5);
500

501
	return cr_done ? 0 : -1;
502
503
}

504
505
static int
dp_link_train_eq(struct drm_device *dev, struct dp_state *dp)
506
{
507
508
	bool eq_done, cr_done = true;
	int tries = 0, i;
509

510
	dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2);
511

512
513
	do {
		if (dp_link_train_update(dev, dp, 400))
514
515
			break;

516
517
518
519
520
521
522
523
524
		eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE);
		for (i = 0; i < dp->link_nr && eq_done; i++) {
			u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
			if (!(lane & DP_LANE_CR_DONE))
				cr_done = false;
			if (!(lane & DP_LANE_CHANNEL_EQ_DONE) ||
			    !(lane & DP_LANE_SYMBOL_LOCKED))
				eq_done = false;
		}
525

526
527
528
529
530
		if (dp_link_train_commit(dev, dp))
			break;
	} while (!eq_done && cr_done && ++tries <= 5);

	return eq_done ? 0 : -1;
531
532
533
}

bool
534
nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate)
535
{
536
	struct drm_nouveau_private *dev_priv = encoder->dev->dev_private;
537
	struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
538
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
539
540
541
542
543
544
545
546
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector =
		nouveau_encoder_connector_get(nv_encoder);
	struct drm_device *dev = encoder->dev;
	struct nouveau_i2c_chan *auxch;
	const u32 bw_list[] = { 270000, 162000, 0 };
	const u32 *link_bw = bw_list;
	struct dp_state dp;
547

548
549
	auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
	if (!auxch)
550
551
		return false;

552
553
	dp.table = nouveau_dp_bios_data(dev, nv_encoder->dcb, &dp.entry);
	if (!dp.table)
554
		return -EINVAL;
555

556
557
558
559
560
	dp.dcb = nv_encoder->dcb;
	dp.crtc = nv_crtc->index;
	dp.auxch = auxch->rd;
	dp.or = nv_encoder->or;
	dp.link = !(nv_encoder->dcb->sorconf.link & 1);
561
	dp.dpcd = nv_encoder->dp.dpcd;
562

563
564
565
566
567
	/* some sinks toggle hotplug in response to some of the actions
	 * we take during link training (DP_SET_POWER is one), we need
	 * to ignore them for the moment to avoid races.
	 */
	pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, false);
568

569
	/* enable down-spreading, if possible */
570
571
	if (dp.table[1] >= 16) {
		u16 script = ROM16(dp.entry[14]);
572
		if (nv_encoder->dp.dpcd[3] & 1)
573
			script = ROM16(dp.entry[12]);
574
575
576
577

		nouveau_bios_run_init_table(dev, script, dp.dcb, dp.crtc);
	}

578
	/* execute pre-train script from vbios */
579
	nouveau_bios_run_init_table(dev, ROM16(dp.entry[6]), dp.dcb, dp.crtc);
580

581
	/* start off at highest link rate supported by encoder and display */
582
	while (*link_bw > nv_encoder->dp.link_bw)
583
		link_bw++;
584

585
586
587
588
589
	while (link_bw[0]) {
		/* find minimum required lane count at this link rate */
		dp.link_nr = nv_encoder->dp.link_nr;
		while ((dp.link_nr >> 1) * link_bw[0] > datarate)
			dp.link_nr >>= 1;
590

591
592
593
594
		/* drop link rate to minimum with this lane count */
		while ((link_bw[1] * dp.link_nr) > datarate)
			link_bw++;
		dp.link_bw = link_bw[0];
595

596
597
		/* program selected link configuration */
		dp_set_link_config(dev, &dp);
598

599
600
601
602
		/* attempt to train the link at this configuration */
		memset(dp.stat, 0x00, sizeof(dp.stat));
		if (!dp_link_train_cr(dev, &dp) &&
		    !dp_link_train_eq(dev, &dp))
603
604
			break;

605
606
		/* retry at lower rate */
		link_bw++;
607
608
	}

609
610
	/* finish link training */
	dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE);
611

612
	/* execute post-train script from vbios */
613
	nouveau_bios_run_init_table(dev, ROM16(dp.entry[8]), dp.dcb, dp.crtc);
614

615
	/* re-enable hotplug detect */
616
617
	pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, true);
	return true;
618
619
620
621
622
623
624
}

bool
nouveau_dp_detect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
625
626
	struct nouveau_i2c_chan *auxch;
	u8 *dpcd = nv_encoder->dp.dpcd;
627
628
	int ret;

629
630
631
632
633
	auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
	if (!auxch)
		return false;

	ret = auxch_tx(dev, auxch->rd, 9, DP_DPCD_REV, dpcd, 8);
634
635
636
	if (ret)
		return false;

637
638
	nv_encoder->dp.link_bw = 27000 * dpcd[1];
	nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK;
639

640
641
642
643
644
	NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n",
		     nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]);
	NV_DEBUG_KMS(dev, "encoder: %dx%d\n",
		     nv_encoder->dcb->dpconf.link_nr,
		     nv_encoder->dcb->dpconf.link_bw);
645

646
	if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr)
647
		nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr;
648
649
	if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw)
		nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw;
650

651
652
	NV_DEBUG_KMS(dev, "maximum: %dx%d\n",
		     nv_encoder->dp.link_nr, nv_encoder->dp.link_bw);
653

654
655
656
657
658
659
660
	return true;
}

int
nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr,
		 uint8_t *data, int data_nr)
{
661
	return auxch_tx(auxch->dev, auxch->rd, cmd, addr, data, data_nr);
662
663
}

664
665
static int
nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
666
{
667
668
669
	struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap;
	struct i2c_msg *msg = msgs;
	int ret, mcnt = num;
670

671
672
673
	while (mcnt--) {
		u8 remaining = msg->len;
		u8 *ptr = msg->buf;
674

675
676
677
		while (remaining) {
			u8 cnt = (remaining > 16) ? 16 : remaining;
			u8 cmd;
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
			if (msg->flags & I2C_M_RD)
				cmd = AUX_I2C_READ;
			else
				cmd = AUX_I2C_WRITE;

			if (mcnt || remaining > 16)
				cmd |= AUX_I2C_MOT;

			ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt);
			if (ret < 0)
				return ret;

			ptr += cnt;
			remaining -= cnt;
693
		}
694
695

		msg++;
696
	}
697
698
699
700
701
702
703
704

	return num;
}

static u32
nouveau_dp_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
705
706
}

707
708
709
710
const struct i2c_algorithm nouveau_dp_i2c_algo = {
	.master_xfer = nouveau_dp_i2c_xfer,
	.functionality = nouveau_dp_i2c_func
};