qspinlock_paravirt.h 16.4 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2
3
4
5
6
7
#ifndef _GEN_PV_LOCK_SLOWPATH
#error "do not include this file"
#endif

#include <linux/hash.h>
#include <linux/bootmem.h>
8
#include <linux/debug_locks.h>
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/*
 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
 * of spinning them.
 *
 * This relies on the architecture to provide two paravirt hypercalls:
 *
 *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
 *   pv_kick(cpu)             -- wakes a suspended vcpu
 *
 * Using these we implement __pv_queued_spin_lock_slowpath() and
 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
 * native_queued_spin_unlock().
 */

#define _Q_SLOW_VAL	(3U << _Q_LOCKED_OFFSET)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
/*
 * Queue Node Adaptive Spinning
 *
 * A queue node vCPU will stop spinning if the vCPU in the previous node is
 * not running. The one lock stealing attempt allowed at slowpath entry
 * mitigates the slight slowdown for non-overcommitted guest with this
 * aggressive wait-early mechanism.
 *
 * The status of the previous node will be checked at fixed interval
 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
 * pound on the cacheline of the previous node too heavily.
 */
#define PV_PREV_CHECK_MASK	0xff

40
41
42
43
/*
 * Queue node uses: vcpu_running & vcpu_halted.
 * Queue head uses: vcpu_running & vcpu_hashed.
 */
44
45
enum vcpu_state {
	vcpu_running = 0,
46
47
	vcpu_halted,		/* Used only in pv_wait_node */
	vcpu_hashed,		/* = pv_hash'ed + vcpu_halted */
48
49
50
51
52
53
54
55
56
57
};

struct pv_node {
	struct mcs_spinlock	mcs;
	struct mcs_spinlock	__res[3];

	int			cpu;
	u8			state;
};

58
59
60
61
62
/*
 * Include queued spinlock statistics code
 */
#include "qspinlock_stat.h"

63
/*
64
65
 * Hybrid PV queued/unfair lock
 *
66
67
 * By replacing the regular queued_spin_trylock() with the function below,
 * it will be called once when a lock waiter enter the PV slowpath before
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
 * being queued.
 *
 * The pending bit is set by the queue head vCPU of the MCS wait queue in
 * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
 * When that bit becomes visible to the incoming waiters, no lock stealing
 * is allowed. The function will return immediately to make the waiters
 * enter the MCS wait queue. So lock starvation shouldn't happen as long
 * as the queued mode vCPUs are actively running to set the pending bit
 * and hence disabling lock stealing.
 *
 * When the pending bit isn't set, the lock waiters will stay in the unfair
 * mode spinning on the lock unless the MCS wait queue is empty. In this
 * case, the lock waiters will enter the queued mode slowpath trying to
 * become the queue head and set the pending bit.
 *
 * This hybrid PV queued/unfair lock combines the best attributes of a
 * queued lock (no lock starvation) and an unfair lock (good performance
 * on not heavily contended locks).
86
 */
87
88
#define queued_spin_trylock(l)	pv_hybrid_queued_unfair_trylock(l)
static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
89
{
90
91
92
93
94
95
96
97
	/*
	 * Stay in unfair lock mode as long as queued mode waiters are
	 * present in the MCS wait queue but the pending bit isn't set.
	 */
	for (;;) {
		int val = atomic_read(&lock->val);

		if (!(val & _Q_LOCKED_PENDING_MASK) &&
98
		   (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
99
100
101
102
103
104
105
			qstat_inc(qstat_pv_lock_stealing, true);
			return true;
		}
		if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
			break;

		cpu_relax();
106
107
108
	}

	return false;
109
110
111
112
113
114
115
116
117
}

/*
 * The pending bit is used by the queue head vCPU to indicate that it
 * is actively spinning on the lock and no lock stealing is allowed.
 */
#if _Q_PENDING_BITS == 8
static __always_inline void set_pending(struct qspinlock *lock)
{
118
	WRITE_ONCE(lock->pending, 1);
119
120
121
122
}

static __always_inline void clear_pending(struct qspinlock *lock)
{
123
	WRITE_ONCE(lock->pending, 0);
124
125
126
127
}

/*
 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
128
129
 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
 * lock just to be sure that it will get it.
130
131
132
 */
static __always_inline int trylock_clear_pending(struct qspinlock *lock)
{
133
134
	return !READ_ONCE(lock->locked) &&
	       (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
135
				_Q_LOCKED_VAL) == _Q_PENDING_VAL);
136
137
138
139
}
#else /* _Q_PENDING_BITS == 8 */
static __always_inline void set_pending(struct qspinlock *lock)
{
140
	atomic_or(_Q_PENDING_VAL, &lock->val);
141
142
143
144
}

static __always_inline void clear_pending(struct qspinlock *lock)
{
145
	atomic_andnot(_Q_PENDING_VAL, &lock->val);
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
}

static __always_inline int trylock_clear_pending(struct qspinlock *lock)
{
	int val = atomic_read(&lock->val);

	for (;;) {
		int old, new;

		if (val  & _Q_LOCKED_MASK)
			break;

		/*
		 * Try to clear pending bit & set locked bit
		 */
		old = val;
		new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
163
		val = atomic_cmpxchg_acquire(&lock->val, old, new);
164
165
166
167
168
169
170
171

		if (val == old)
			return 1;
	}
	return 0;
}
#endif /* _Q_PENDING_BITS == 8 */

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Lock and MCS node addresses hash table for fast lookup
 *
 * Hashing is done on a per-cacheline basis to minimize the need to access
 * more than one cacheline.
 *
 * Dynamically allocate a hash table big enough to hold at least 4X the
 * number of possible cpus in the system. Allocation is done on page
 * granularity. So the minimum number of hash buckets should be at least
 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
 *
 * Since we should not be holding locks from NMI context (very rare indeed) the
 * max load factor is 0.75, which is around the point where open addressing
 * breaks down.
 *
 */
struct pv_hash_entry {
	struct qspinlock *lock;
	struct pv_node   *node;
};

#define PV_HE_PER_LINE	(SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
#define PV_HE_MIN	(PAGE_SIZE / sizeof(struct pv_hash_entry))

static struct pv_hash_entry *pv_lock_hash;
static unsigned int pv_lock_hash_bits __read_mostly;

/*
 * Allocate memory for the PV qspinlock hash buckets
 *
 * This function should be called from the paravirt spinlock initialization
 * routine.
 */
void __init __pv_init_lock_hash(void)
{
	int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);

	if (pv_hash_size < PV_HE_MIN)
		pv_hash_size = PV_HE_MIN;

	/*
	 * Allocate space from bootmem which should be page-size aligned
	 * and hence cacheline aligned.
	 */
	pv_lock_hash = alloc_large_system_hash("PV qspinlock",
					       sizeof(struct pv_hash_entry),
218
219
					       pv_hash_size, 0,
					       HASH_EARLY | HASH_ZERO,
220
221
222
223
224
225
226
227
228
229
230
231
232
					       &pv_lock_hash_bits, NULL,
					       pv_hash_size, pv_hash_size);
}

#define for_each_hash_entry(he, offset, hash)						\
	for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;	\
	     offset < (1 << pv_lock_hash_bits);						\
	     offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])

static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
{
	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
	struct pv_hash_entry *he;
233
	int hopcnt = 0;
234
235

	for_each_hash_entry(he, offset, hash) {
236
		hopcnt++;
237
238
		if (!cmpxchg(&he->lock, NULL, lock)) {
			WRITE_ONCE(he->node, node);
239
			qstat_hop(hopcnt);
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
			return &he->lock;
		}
	}
	/*
	 * Hard assume there is a free entry for us.
	 *
	 * This is guaranteed by ensuring every blocked lock only ever consumes
	 * a single entry, and since we only have 4 nesting levels per CPU
	 * and allocated 4*nr_possible_cpus(), this must be so.
	 *
	 * The single entry is guaranteed by having the lock owner unhash
	 * before it releases.
	 */
	BUG();
}

static struct pv_node *pv_unhash(struct qspinlock *lock)
{
	unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
	struct pv_hash_entry *he;
	struct pv_node *node;

	for_each_hash_entry(he, offset, hash) {
		if (READ_ONCE(he->lock) == lock) {
			node = READ_ONCE(he->node);
			WRITE_ONCE(he->lock, NULL);
			return node;
		}
	}
	/*
	 * Hard assume we'll find an entry.
	 *
	 * This guarantees a limited lookup time and is itself guaranteed by
	 * having the lock owner do the unhash -- IFF the unlock sees the
	 * SLOW flag, there MUST be a hash entry.
	 */
	BUG();
}

279
280
281
282
283
284
285
286
287
288
/*
 * Return true if when it is time to check the previous node which is not
 * in a running state.
 */
static inline bool
pv_wait_early(struct pv_node *prev, int loop)
{
	if ((loop & PV_PREV_CHECK_MASK) != 0)
		return false;

289
	return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
290
291
}

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*
 * Initialize the PV part of the mcs_spinlock node.
 */
static void pv_init_node(struct mcs_spinlock *node)
{
	struct pv_node *pn = (struct pv_node *)node;

	BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));

	pn->cpu = smp_processor_id();
	pn->state = vcpu_running;
}

/*
 * Wait for node->locked to become true, halt the vcpu after a short spin.
307
308
 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
 * behalf.
309
 */
310
static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
311
312
{
	struct pv_node *pn = (struct pv_node *)node;
313
	struct pv_node *pp = (struct pv_node *)prev;
314
	int loop;
315
	bool wait_early;
316

317
	for (;;) {
318
		for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
319
320
			if (READ_ONCE(node->locked))
				return;
321
322
323
324
			if (pv_wait_early(pp, loop)) {
				wait_early = true;
				break;
			}
325
326
327
328
329
330
331
332
			cpu_relax();
		}

		/*
		 * Order pn->state vs pn->locked thusly:
		 *
		 * [S] pn->state = vcpu_halted	  [S] next->locked = 1
		 *     MB			      MB
333
		 * [L] pn->locked		[RmW] pn->state = vcpu_hashed
334
		 *
335
		 * Matches the cmpxchg() from pv_kick_node().
336
		 */
337
		smp_store_mb(pn->state, vcpu_halted);
338

339
340
		if (!READ_ONCE(node->locked)) {
			qstat_inc(qstat_pv_wait_node, true);
341
			qstat_inc(qstat_pv_wait_early, wait_early);
342
			pv_wait(&pn->state, vcpu_halted);
343
		}
344
345

		/*
346
		 * If pv_kick_node() changed us to vcpu_hashed, retain that
347
348
		 * value so that pv_wait_head_or_lock() knows to not also try
		 * to hash this lock.
349
		 */
350
		cmpxchg(&pn->state, vcpu_halted, vcpu_running);
351
352
353
354
355
356
357
358

		/*
		 * If the locked flag is still not set after wakeup, it is a
		 * spurious wakeup and the vCPU should wait again. However,
		 * there is a pretty high overhead for CPU halting and kicking.
		 * So it is better to spin for a while in the hope that the
		 * MCS lock will be released soon.
		 */
359
		qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
360
	}
361

362
363
364
365
366
367
368
369
	/*
	 * By now our node->locked should be 1 and our caller will not actually
	 * spin-wait for it. We do however rely on our caller to do a
	 * load-acquire for us.
	 */
}

/*
370
371
 * Called after setting next->locked = 1 when we're the lock owner.
 *
372
373
374
 * Instead of waking the waiters stuck in pv_wait_node() advance their state
 * such that they're waiting in pv_wait_head_or_lock(), this avoids a
 * wake/sleep cycle.
375
 */
376
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
377
378
379
380
{
	struct pv_node *pn = (struct pv_node *)node;

	/*
381
382
383
	 * If the vCPU is indeed halted, advance its state to match that of
	 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
	 * observe its next->locked value and advance itself.
384
	 *
385
	 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
386
387
388
389
390
391
392
393
	 *
	 * The write to next->locked in arch_mcs_spin_unlock_contended()
	 * must be ordered before the read of pn->state in the cmpxchg()
	 * below for the code to work correctly. To guarantee full ordering
	 * irrespective of the success or failure of the cmpxchg(),
	 * a relaxed version with explicit barrier is used. The control
	 * dependency will order the reading of pn->state before any
	 * subsequent writes.
394
	 */
395
396
397
	smp_mb__before_atomic();
	if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
	    != vcpu_halted)
398
399
400
401
		return;

	/*
	 * Put the lock into the hash table and set the _Q_SLOW_VAL.
402
	 *
403
404
405
	 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
	 * the hash table later on at unlock time, no atomic instruction is
	 * needed.
406
	 */
407
	WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
408
	(void)pv_hash(lock, pn);
409
410
411
}

/*
412
413
 * Wait for l->locked to become clear and acquire the lock;
 * halt the vcpu after a short spin.
414
 * __pv_queued_spin_unlock() will wake us.
415
416
 *
 * The current value of the lock will be returned for additional processing.
417
 */
418
419
static u32
pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
420
421
422
{
	struct pv_node *pn = (struct pv_node *)node;
	struct qspinlock **lp = NULL;
423
	int waitcnt = 0;
424
425
	int loop;

426
427
428
429
430
431
432
	/*
	 * If pv_kick_node() already advanced our state, we don't need to
	 * insert ourselves into the hash table anymore.
	 */
	if (READ_ONCE(pn->state) == vcpu_hashed)
		lp = (struct qspinlock **)1;

433
434
435
436
437
	/*
	 * Tracking # of slowpath locking operations
	 */
	qstat_inc(qstat_pv_lock_slowpath, true);

438
	for (;; waitcnt++) {
439
440
441
442
443
444
		/*
		 * Set correct vCPU state to be used by queue node wait-early
		 * mechanism.
		 */
		WRITE_ONCE(pn->state, vcpu_running);

445
446
447
448
449
		/*
		 * Set the pending bit in the active lock spinning loop to
		 * disable lock stealing before attempting to acquire the lock.
		 */
		set_pending(lock);
450
		for (loop = SPIN_THRESHOLD; loop; loop--) {
451
452
			if (trylock_clear_pending(lock))
				goto gotlock;
453
454
			cpu_relax();
		}
455
456
		clear_pending(lock);

457
458
459

		if (!lp) { /* ONCE */
			lp = pv_hash(lock, pn);
460

461
			/*
462
463
464
			 * We must hash before setting _Q_SLOW_VAL, such that
			 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
			 * we'll be sure to be able to observe our hash entry.
465
			 *
466
467
468
			 *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
			 *       MB                           RMB
			 * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
469
			 *
470
			 * Matches the smp_rmb() in __pv_queued_spin_unlock().
471
			 */
472
			if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
473
				/*
474
475
476
				 * The lock was free and now we own the lock.
				 * Change the lock value back to _Q_LOCKED_VAL
				 * and unhash the table.
477
				 */
478
				WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
479
				WRITE_ONCE(*lp, NULL);
480
				goto gotlock;
481
482
			}
		}
483
		WRITE_ONCE(pn->state, vcpu_hashed);
484
485
		qstat_inc(qstat_pv_wait_head, true);
		qstat_inc(qstat_pv_wait_again, waitcnt);
486
		pv_wait(&lock->locked, _Q_SLOW_VAL);
487
488

		/*
489
490
		 * Because of lock stealing, the queue head vCPU may not be
		 * able to acquire the lock before it has to wait again.
491
492
493
494
		 */
	}

	/*
495
496
497
498
	 * The cmpxchg() or xchg() call before coming here provides the
	 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
	 * here is to indicate to the compiler that the value will always
	 * be nozero to enable better code optimization.
499
	 */
500
501
gotlock:
	return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
502
503
504
}

/*
505
506
 * PV versions of the unlock fastpath and slowpath functions to be used
 * instead of queued_spin_unlock().
507
 */
508
509
__visible void
__pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
510
511
512
{
	struct pv_node *node;

513
514
515
516
	if (unlikely(locked != _Q_SLOW_VAL)) {
		WARN(!debug_locks_silent,
		     "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
		     (unsigned long)lock, atomic_read(&lock->val));
517
518
519
		return;
	}

520
521
522
523
524
	/*
	 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
	 * so we need a barrier to order the read of the node data in
	 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
	 *
525
	 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
526
527
528
	 */
	smp_rmb();

529
530
531
532
533
534
535
536
537
538
	/*
	 * Since the above failed to release, this must be the SLOW path.
	 * Therefore start by looking up the blocked node and unhashing it.
	 */
	node = pv_unhash(lock);

	/*
	 * Now that we have a reference to the (likely) blocked pv_node,
	 * release the lock.
	 */
539
	smp_store_release(&lock->locked, 0);
540
541
542
543

	/*
	 * At this point the memory pointed at by lock can be freed/reused,
	 * however we can still use the pv_node to kick the CPU.
544
545
546
	 * The other vCPU may not really be halted, but kicking an active
	 * vCPU is harmless other than the additional latency in completing
	 * the unlock.
547
	 */
548
	qstat_inc(qstat_pv_kick_unlock, true);
549
	pv_kick(node->cpu);
550
}
551

552
553
554
/*
 * Include the architecture specific callee-save thunk of the
 * __pv_queued_spin_unlock(). This thunk is put together with
555
556
557
558
 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
 * function close to each other sharing consecutive instruction cachelines.
 * Alternatively, architecture specific version of __pv_queued_spin_unlock()
 * can be defined.
559
560
561
 */
#include <asm/qspinlock_paravirt.h>

562
563
564
565
566
567
568
569
570
571
#ifndef __pv_queued_spin_unlock
__visible void __pv_queued_spin_unlock(struct qspinlock *lock)
{
	u8 locked;

	/*
	 * We must not unlock if SLOW, because in that case we must first
	 * unhash. Otherwise it would be possible to have multiple @lock
	 * entries, which would be BAD.
	 */
572
	locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
573
574
575
576
577
578
	if (likely(locked == _Q_LOCKED_VAL))
		return;

	__pv_queued_spin_unlock_slowpath(lock, locked);
}
#endif /* __pv_queued_spin_unlock */