dm-thin.c 107 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

207
struct pool_features {
208
209
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
210
211
212
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
213
	bool error_if_no_space:1;
214
215
};

216
217
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219
220
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

221
222
#define CELL_SORT_ARRAY_SIZE 8192

223
224
225
226
227
228
229
230
231
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
232
	uint32_t sectors_per_block;
233
	int sectors_per_block_shift;
234

235
	struct pool_features pf;
236
	bool low_water_triggered:1;	/* A dm event has been sent */
237
	bool suspended:1;
238

239
	struct dm_bio_prison *prison;
240
241
242
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
243
	struct throttle throttle;
244
	struct work_struct worker;
245
	struct delayed_work waker;
246
	struct delayed_work no_space_timeout;
247

248
	unsigned long last_commit_jiffies;
249
	unsigned ref_count;
250
251
252
253

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
254
	struct list_head prepared_discards;
255
	struct list_head active_thins;
256

257
258
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
259

Mike Snitzer's avatar
Mike Snitzer committed
260
	struct dm_thin_new_mapping *next_mapping;
261
	mempool_t *mapping_pool;
262
263
264
265

	process_bio_fn process_bio;
	process_bio_fn process_discard;

266
267
268
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

269
270
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
271

272
	struct dm_bio_prison_cell **cell_sort_array;
273
274
};

275
static enum pool_mode get_pool_mode(struct pool *pool);
276
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277

278
279
280
281
282
283
284
285
286
287
288
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
289
290
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291
292
293
294
295
296
};

/*
 * Target context for a thin.
 */
struct thin_c {
297
	struct list_head list;
298
	struct dm_dev *pool_dev;
299
	struct dm_dev *origin_dev;
300
	sector_t origin_size;
301
302
303
304
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
305
306
	struct mapped_device *thin_md;

307
	bool requeue_mode:1;
308
	spinlock_t lock;
309
	struct list_head deferred_cells;
310
311
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
312
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314
315
316
317
318
319

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
320
321
322
323
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/**
 * __blkdev_issue_discard_async - queue a discard with async completion
 * @bdev:	blockdev to issue discard for
 * @sector:	start sector
 * @nr_sects:	number of sectors to discard
 * @gfp_mask:	memory allocation flags (for bio_alloc)
 * @flags:	BLKDEV_IFL_* flags to control behaviour
 * @parent_bio: parent discard bio that all sub discards get chained to
 *
 * Description:
 *    Asynchronously issue a discard request for the sectors in question.
 */
static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
					struct bio *parent_bio)
{
	struct request_queue *q = bdev_get_queue(bdev);
	int type = REQ_WRITE | REQ_DISCARD;
	struct bio *bio;

344
	if (!q || !nr_sects)
Joe Thornber's avatar
Joe Thornber committed
345
346
347
348
349
350
351
352
353
354
355
		return -ENXIO;

	if (!blk_queue_discard(q))
		return -EOPNOTSUPP;

	if (flags & BLKDEV_DISCARD_SECURE) {
		if (!blk_queue_secdiscard(q))
			return -EOPNOTSUPP;
		type |= REQ_SECURE;
	}

356
357
358
359
360
361
	/*
	 * Required bio_put occurs in bio_endio thanks to bio_chain below
	 */
	bio = bio_alloc(gfp_mask, 1);
	if (!bio)
		return -ENOMEM;
Joe Thornber's avatar
Joe Thornber committed
362

363
	bio_chain(bio, parent_bio);
Joe Thornber's avatar
Joe Thornber committed
364

365
366
367
	bio->bi_iter.bi_sector = sector;
	bio->bi_bdev = bdev;
	bio->bi_iter.bi_size = nr_sects << 9;
Joe Thornber's avatar
Joe Thornber committed
368

369
	submit_bio(type, bio);
Joe Thornber's avatar
Joe Thornber committed
370

371
	return 0;
Joe Thornber's avatar
Joe Thornber committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
}

static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
			 struct bio *parent_bio)
{
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);

	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
					    GFP_NOWAIT, 0, parent_bio);
}

/*----------------------------------------------------------------*/

398
399
400
401
402
403
404
405
406
407
408
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

440
441
442
443
444
445
446
447
448
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

449
450
451
452
453
454
455
456
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

457
458
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
459
{
460
	dm_cell_error(pool->prison, cell, error_code);
461
462
463
	dm_bio_prison_free_cell(pool->prison, cell);
}

464
465
466
467
468
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, -EIO);
}

469
470
471
472
473
474
475
476
477
478
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

479
480
/*----------------------------------------------------------------*/

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
541
struct dm_thin_endio_hook {
542
	struct thin_c *tc;
543
544
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
545
	struct dm_thin_new_mapping *overwrite_mapping;
546
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
547
	struct dm_bio_prison_cell *cell;
548
549
};

550
551
552
553
554
555
556
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
557
558
{
	struct bio *bio;
559

560
561
562
563
	while ((bio = bio_list_pop(bios))) {
		bio->bi_error = error;
		bio_endio(bio);
	}
564
565
566
567
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
568
	struct bio_list bios;
569
	unsigned long flags;
570
571

	bio_list_init(&bios);
572

573
	spin_lock_irqsave(&tc->lock, flags);
574
	__merge_bio_list(&bios, master);
575
	spin_unlock_irqrestore(&tc->lock, flags);
576

577
	error_bio_list(&bios, error);
578
579
}

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

597
598
static void requeue_io(struct thin_c *tc)
{
599
	struct bio_list bios;
600
	unsigned long flags;
601
602
603

	bio_list_init(&bios);

604
	spin_lock_irqsave(&tc->lock, flags);
605
606
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
607
	spin_unlock_irqrestore(&tc->lock, flags);
608

609
610
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
611
612
}

613
static void error_retry_list_with_code(struct pool *pool, int error)
614
615
616
617
618
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
619
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
620
621
622
	rcu_read_unlock();
}

623
624
625
626
627
static void error_retry_list(struct pool *pool)
{
	return error_retry_list_with_code(pool, -EIO);
}

628
629
630
631
632
633
634
635
636
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
637
	struct pool *pool = tc->pool;
638
	sector_t block_nr = bio->bi_iter.bi_sector;
639

640
641
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
642
	else
643
		(void) sector_div(block_nr, pool->sectors_per_block);
644
645

	return block_nr;
646
647
}

Joe Thornber's avatar
Joe Thornber committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

676
677
678
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
679
	sector_t bi_sector = bio->bi_iter.bi_sector;
680
681

	bio->bi_bdev = tc->pool_dev->bdev;
682
	if (block_size_is_power_of_two(pool))
683
684
685
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
686
	else
687
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
688
				 sector_div(bi_sector, pool->sectors_per_block);
689
690
}

691
692
693
694
695
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

696
697
698
699
700
701
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

702
703
704
705
706
707
708
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

709
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
710
711
712
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

713
static void issue(struct thin_c *tc, struct bio *bio)
714
715
716
717
{
	struct pool *pool = tc->pool;
	unsigned long flags;

718
719
720
721
722
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

723
	/*
724
725
726
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
727
	 */
728
729
730
731
732
733
734
735
736
737
738
739
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
740
741
}

742
743
744
745
746
747
748
749
750
751
752
753
754
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

755
756
757
758
759
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
760
struct dm_thin_new_mapping {
761
762
	struct list_head list;

763
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
764
	bool maybe_shared:1;
765

766
767
768
769
770
771
772
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

773
	int err;
774
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
775
	dm_block_t virt_begin, virt_end;
776
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
777
	struct dm_bio_prison_cell *cell;
778
779
780
781
782
783
784
785
786
787
788

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

789
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
790
791
792
{
	struct pool *pool = m->tc->pool;

793
	if (atomic_dec_and_test(&m->prepare_actions)) {
794
		list_add_tail(&m->list, &pool->prepared_mappings);
795
796
797
798
		wake_worker(pool);
	}
}

799
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
800
801
802
803
804
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
805
	__complete_mapping_preparation(m);
806
807
808
	spin_unlock_irqrestore(&pool->lock, flags);
}

809
810
811
812
813
814
815
816
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

817
static void overwrite_endio(struct bio *bio)
818
{
819
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
820
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
821

822
823
	bio->bi_end_io = m->saved_bi_end_io;

824
	m->err = bio->bi_error;
825
	complete_mapping_preparation(m);
826
827
828
829
830
831
832
833
834
835
836
837
838
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
839
840
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
841
 */
842
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
843
844
845
846
{
	struct pool *pool = tc->pool;
	unsigned long flags;

847
848
849
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
850
851
852
853

	wake_worker(pool);
}

854
855
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

856
857
858
859
860
861
862
863
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
864
{
865
	struct remap_info *info = context;
866
867
	struct bio *bio;

868
	while ((bio = bio_list_pop(&cell->bios))) {
869
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
870
			bio_list_add(&info->defer_bios, bio);
871
		else {
872
873
874
875
876
877
878
879
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
880
881
882
883
		}
	}
}

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

910
911
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
912
	cell_error(m->tc->pool, m->cell);
913
914
915
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
916

Mike Snitzer's avatar
Mike Snitzer committed
917
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
918
919
{
	struct thin_c *tc = m->tc;
920
	struct pool *pool = tc->pool;
921
	struct bio *bio = m->bio;
922
923
924
	int r;

	if (m->err) {
925
		cell_error(pool, m->cell);
926
		goto out;
927
928
929
930
931
932
933
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
934
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
935
	if (r) {
936
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
937
		cell_error(pool, m->cell);
938
		goto out;
939
940
941
942
943
944
945
946
947
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
948
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
949
		bio_endio(bio);
950
951
952
953
954
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
955

956
out:
957
	list_del(&m->list);
958
	mempool_free(m, pool->mapping_pool);
959
960
}

Joe Thornber's avatar
Joe Thornber committed
961
962
963
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
964
965
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
966
967
968
969
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
970

Joe Thornber's avatar
Joe Thornber committed
971
972
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
973
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
974
975
976
977
978
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
979
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
980
981
982
983
984
985
986
987
988
989
990
991
992
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
993
		bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
994

995
	cell_defer_no_holder(tc, m->cell);
996
997
998
	mempool_free(m, tc->pool->mapping_pool);
}

Joe Thornber's avatar
Joe Thornber committed
999
static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1000
{
Joe Thornber's avatar
Joe Thornber committed
1001
1002
1003
1004
1005
1006
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
	int r;
	bool used = true;
1007
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1008
1009
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
Joe Thornber's avatar
Joe Thornber committed
1010

Joe Thornber's avatar
Joe Thornber committed
1011
1012
1013
1014
1015
1016
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
				return r;
1017

Joe Thornber's avatar
Joe Thornber committed
1018
1019
			if (!used)
				break;
1020
		}
Joe Thornber's avatar
Joe Thornber committed
1021

Joe Thornber's avatar
Joe Thornber committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
				return r;

			if (used)
				break;
		}

		r = issue_discard(tc, b, e, m->bio);
		if (r)
			return r;

		b = e;
	}

	return 0;
Joe Thornber's avatar
Joe Thornber committed
1043
1044
}

Joe Thornber's avatar
Joe Thornber committed
1045
static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1046
1047
1048
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1049
	struct pool *pool = tc->pool;
1050

Joe Thornber's avatar
Joe Thornber committed
1051
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1052
	if (r)
Joe Thornber's avatar
Joe Thornber committed
1053
1054
1055
1056
1057
1058
		metadata_operation_failed(pool, "dm_thin_remove_range", r);

	else if (m->maybe_shared)
		r = passdown_double_checking_shared_status(m);
	else
		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1059

Joe Thornber's avatar
Joe Thornber committed
1060
1061
1062
1063
	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
1064
1065
	m->bio->bi_error = r;
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1066
1067
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1068
1069
}

Joe Thornber's avatar
Joe Thornber committed
1070
static void process_prepared(struct pool *pool, struct list_head *head,
1071
			     process_mapping_fn *fn)
1072
1073
1074
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1075
	struct dm_thin_new_mapping *m, *tmp;
1076
1077
1078

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1079
	list_splice_init(head, &maps);
1080
1081
1082
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1083
		(*fn)(m);
1084
1085
1086
1087
1088
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1089
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1090
{
1091
1092
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1093
1094
1095
1096
1097
1098
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1118
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1119
{
1120
	struct dm_thin_new_mapping *m = pool->next_mapping;
1121
1122
1123

	BUG_ON(!pool->next_mapping);

1124
1125
1126
1127
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1128
1129
	pool->next_mapping = NULL;

1130
	return m;
1131
1132
}

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1150
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1151
				      dm_block_t data_begin,
1152
1153
1154
1155
1156
1157
1158
1159
1160
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1161
	remap_and_issue(tc, bio, data_begin);
1162
1163
}

1164
1165
1166
/*
 * A partial copy also needs to zero the uncopied region.
 */
1167
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1168
1169
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1170
1171
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1172
1173
1174
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1175
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1176
1177

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1178
1179
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1180
1181
1182
	m->data_block = data_dest;
	m->cell = cell;

1183
1184
1185
1186
1187
1188
1189
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1190
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1191
		complete_mapping_preparation(m); /* already quiesced */
1192
1193
1194
1195
1196
1197
1198

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1199
1200
1201
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1202
1203
		struct dm_io_region from, to;

1204
		from.bdev = origin->bdev;
1205
		from.sector = data_origin * pool->sectors_per_block;
1206
		from.count = len;
1207
1208
1209

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1210
		to.count = len;
1211
1212
1213
1214

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1215
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1234
1235
		}
	}
1236
1237

	complete_mapping_preparation(m); /* drop our ref */
1238
1239
}

1240
1241
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1242
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1243
1244
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1245
1246
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1247
1248
}

1249
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1250
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1251
1252
1253
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1254
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1255

1256
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1257
	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1258
1259
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1260
1261
1262
1263
1264
1265
1266
1267
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1268
1269
1270
1271
1272
1273
1274
	if (pool->pf.zero_new_blocks) {
		if (io_overwrites_block(pool, bio))
			remap_and_issue_overwrite(tc, bio, data_block, m);
		else
			ll_zero(tc, m, data_block * pool->sectors_per_block,
				(data_block + 1) * pool->sectors_per_block);
	} else
1275
		process_prepared_mapping(m);
1276
}
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1298
1299
}

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

static void check_for_space(struct pool *pool)
{
	int r;
	dm_block_t nr_free;

	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
		return;

	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
	if (r)
		return;

	if (nr_free)
		set_pool_mode(pool, PM_WRITE);
}

1318
1319
1320
1321
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
1322
static int commit(struct pool *pool)
1323
1324
1325
{
	int r;

1326
	if (get_pool_mode(pool) >= PM_READ_ONLY)
1327
1328
		return -EINVAL;