dm-thin.c 108 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

207
struct pool_features {
208
209
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
210
211
212
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
213
	bool error_if_no_space:1;
214
215
};

216
217
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219
220
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

221
222
#define CELL_SORT_ARRAY_SIZE 8192

223
224
225
226
227
228
229
230
231
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
232
	uint32_t sectors_per_block;
233
	int sectors_per_block_shift;
234

235
	struct pool_features pf;
236
	bool low_water_triggered:1;	/* A dm event has been sent */
237
	bool suspended:1;
238

239
	struct dm_bio_prison *prison;
240
241
242
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
243
	struct throttle throttle;
244
	struct work_struct worker;
245
	struct delayed_work waker;
246
	struct delayed_work no_space_timeout;
247

248
	unsigned long last_commit_jiffies;
249
	unsigned ref_count;
250
251
252
253

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
254
	struct list_head prepared_discards;
255
	struct list_head active_thins;
256

257
258
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
259

Mike Snitzer's avatar
Mike Snitzer committed
260
	struct dm_thin_new_mapping *next_mapping;
261
	mempool_t *mapping_pool;
262
263
264
265

	process_bio_fn process_bio;
	process_bio_fn process_discard;

266
267
268
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

269
270
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
271

272
	struct dm_bio_prison_cell **cell_sort_array;
273
274
};

275
static enum pool_mode get_pool_mode(struct pool *pool);
276
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277

278
279
280
281
282
283
284
285
286
287
288
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
289
290
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291
292
293
294
295
296
};

/*
 * Target context for a thin.
 */
struct thin_c {
297
	struct list_head list;
298
	struct dm_dev *pool_dev;
299
	struct dm_dev *origin_dev;
300
	sector_t origin_size;
301
302
303
304
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
305
306
	struct mapped_device *thin_md;

307
	bool requeue_mode:1;
308
	spinlock_t lock;
309
	struct list_head deferred_cells;
310
311
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
312
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314
315
316
317
318
319

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
320
321
322
323
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/**
 * __blkdev_issue_discard_async - queue a discard with async completion
 * @bdev:	blockdev to issue discard for
 * @sector:	start sector
 * @nr_sects:	number of sectors to discard
 * @gfp_mask:	memory allocation flags (for bio_alloc)
 * @flags:	BLKDEV_IFL_* flags to control behaviour
 * @parent_bio: parent discard bio that all sub discards get chained to
 *
 * Description:
 *    Asynchronously issue a discard request for the sectors in question.
 */
static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
					struct bio *parent_bio)
{
	struct request_queue *q = bdev_get_queue(bdev);
	int type = REQ_WRITE | REQ_DISCARD;
	struct bio *bio;

344
	if (!q || !nr_sects)
Joe Thornber's avatar
Joe Thornber committed
345
346
347
348
349
350
351
352
353
354
355
		return -ENXIO;

	if (!blk_queue_discard(q))
		return -EOPNOTSUPP;

	if (flags & BLKDEV_DISCARD_SECURE) {
		if (!blk_queue_secdiscard(q))
			return -EOPNOTSUPP;
		type |= REQ_SECURE;
	}

356
357
358
359
360
361
	/*
	 * Required bio_put occurs in bio_endio thanks to bio_chain below
	 */
	bio = bio_alloc(gfp_mask, 1);
	if (!bio)
		return -ENOMEM;
Joe Thornber's avatar
Joe Thornber committed
362

363
	bio_chain(bio, parent_bio);
Joe Thornber's avatar
Joe Thornber committed
364

365
366
367
	bio->bi_iter.bi_sector = sector;
	bio->bi_bdev = bdev;
	bio->bi_iter.bi_size = nr_sects << 9;
Joe Thornber's avatar
Joe Thornber committed
368

369
	submit_bio(type, bio);
Joe Thornber's avatar
Joe Thornber committed
370

371
	return 0;
Joe Thornber's avatar
Joe Thornber committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
}

static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
			 struct bio *parent_bio)
{
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);

	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
					    GFP_NOWAIT, 0, parent_bio);
}

/*----------------------------------------------------------------*/

398
399
400
401
402
403
404
405
406
407
408
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

440
441
442
443
444
445
446
447
448
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

449
450
451
452
453
454
455
456
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

457
458
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
459
{
460
	dm_cell_error(pool->prison, cell, error_code);
461
462
463
	dm_bio_prison_free_cell(pool->prison, cell);
}

464
465
466
467
468
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, -EIO);
}

469
470
471
472
473
474
475
476
477
478
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

479
480
/*----------------------------------------------------------------*/

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
541
struct dm_thin_endio_hook {
542
	struct thin_c *tc;
543
544
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
545
	struct dm_thin_new_mapping *overwrite_mapping;
546
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
547
	struct dm_bio_prison_cell *cell;
548
549
};

550
551
552
553
554
555
556
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
557
558
{
	struct bio *bio;
559
560
561
562
563
564
565

	while ((bio = bio_list_pop(bios)))
		bio_endio(bio, error);
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
566
	struct bio_list bios;
567
	unsigned long flags;
568
569

	bio_list_init(&bios);
570

571
	spin_lock_irqsave(&tc->lock, flags);
572
	__merge_bio_list(&bios, master);
573
	spin_unlock_irqrestore(&tc->lock, flags);
574

575
	error_bio_list(&bios, error);
576
577
}

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

595
596
static void requeue_io(struct thin_c *tc)
{
597
	struct bio_list bios;
598
	unsigned long flags;
599
600
601

	bio_list_init(&bios);

602
	spin_lock_irqsave(&tc->lock, flags);
603
604
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
605
	spin_unlock_irqrestore(&tc->lock, flags);
606

607
608
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
609
610
}

611
static void error_retry_list_with_code(struct pool *pool, int error)
612
613
614
615
616
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
617
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
618
619
620
	rcu_read_unlock();
}

621
622
623
624
625
static void error_retry_list(struct pool *pool)
{
	return error_retry_list_with_code(pool, -EIO);
}

626
627
628
629
630
631
632
633
634
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
635
	struct pool *pool = tc->pool;
636
	sector_t block_nr = bio->bi_iter.bi_sector;
637

638
639
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
640
	else
641
		(void) sector_div(block_nr, pool->sectors_per_block);
642
643

	return block_nr;
644
645
}

Joe Thornber's avatar
Joe Thornber committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

674
675
676
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
677
	sector_t bi_sector = bio->bi_iter.bi_sector;
678
679

	bio->bi_bdev = tc->pool_dev->bdev;
680
	if (block_size_is_power_of_two(pool))
681
682
683
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
684
	else
685
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
686
				 sector_div(bi_sector, pool->sectors_per_block);
687
688
}

689
690
691
692
693
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

694
695
696
697
698
699
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

700
701
702
703
704
705
706
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

707
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
708
709
710
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

711
static void issue(struct thin_c *tc, struct bio *bio)
712
713
714
715
{
	struct pool *pool = tc->pool;
	unsigned long flags;

716
717
718
719
720
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

721
	/*
722
723
724
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
725
	 */
726
727
728
729
730
731
732
733
734
735
736
737
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
738
739
}

740
741
742
743
744
745
746
747
748
749
750
751
752
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

753
754
755
756
757
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
758
struct dm_thin_new_mapping {
759
760
	struct list_head list;

761
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
762
	bool maybe_shared:1;
763

764
765
766
767
768
769
770
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

771
	int err;
772
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
773
	dm_block_t virt_begin, virt_end;
774
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
775
	struct dm_bio_prison_cell *cell;
776
777
778
779
780
781
782
783
784
785
786

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

787
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
788
789
790
{
	struct pool *pool = m->tc->pool;

791
	if (atomic_dec_and_test(&m->prepare_actions)) {
792
		list_add_tail(&m->list, &pool->prepared_mappings);
793
794
795
796
		wake_worker(pool);
	}
}

797
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
798
799
800
801
802
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
803
	__complete_mapping_preparation(m);
804
805
806
	spin_unlock_irqrestore(&pool->lock, flags);
}

807
808
809
810
811
812
813
814
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

815
816
static void overwrite_endio(struct bio *bio, int err)
{
817
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
818
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
819

820
821
	bio->bi_end_io = m->saved_bi_end_io;

822
	m->err = err;
823
	complete_mapping_preparation(m);
824
825
826
827
828
829
830
831
832
833
834
835
836
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
837
838
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
839
 */
840
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
841
842
843
844
{
	struct pool *pool = tc->pool;
	unsigned long flags;

845
846
847
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
848
849
850
851

	wake_worker(pool);
}

852
853
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

854
855
856
857
858
859
860
861
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
862
{
863
	struct remap_info *info = context;
864
865
	struct bio *bio;

866
	while ((bio = bio_list_pop(&cell->bios))) {
867
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
868
			bio_list_add(&info->defer_bios, bio);
869
		else {
870
871
872
873
874
875
876
877
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
878
879
880
881
		}
	}
}

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

908
909
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
910
	cell_error(m->tc->pool, m->cell);
911
912
913
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
914

Mike Snitzer's avatar
Mike Snitzer committed
915
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
916
917
{
	struct thin_c *tc = m->tc;
918
	struct pool *pool = tc->pool;
919
	struct bio *bio = m->bio;
920
921
922
	int r;

	if (m->err) {
923
		cell_error(pool, m->cell);
924
		goto out;
925
926
927
928
929
930
931
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
932
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
933
	if (r) {
934
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
935
		cell_error(pool, m->cell);
936
		goto out;
937
938
939
940
941
942
943
944
945
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
946
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
947
		bio_endio(bio, 0);
948
949
950
951
952
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
953

954
out:
955
	list_del(&m->list);
956
	mempool_free(m, pool->mapping_pool);
957
958
}

Joe Thornber's avatar
Joe Thornber committed
959
960
961
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
962
963
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
964
965
966
967
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
968

Joe Thornber's avatar
Joe Thornber committed
969
970
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
971
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
	bio_endio(m->bio, 0);
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
		bio_endio(m->bio, 0);

993
	cell_defer_no_holder(tc, m->cell);
994
995
996
	mempool_free(m, tc->pool->mapping_pool);
}

Joe Thornber's avatar
Joe Thornber committed
997
static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
998
{
Joe Thornber's avatar
Joe Thornber committed
999
1000
1001
1002
1003
1004
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
	int r;
	bool used = true;
1005
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1006
1007
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
Joe Thornber's avatar
Joe Thornber committed
1008

Joe Thornber's avatar
Joe Thornber committed
1009
1010
1011
1012
1013
1014
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
				return r;
1015

Joe Thornber's avatar
Joe Thornber committed
1016
1017
			if (!used)
				break;
1018
		}
Joe Thornber's avatar
Joe Thornber committed
1019

Joe Thornber's avatar
Joe Thornber committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
				return r;

			if (used)
				break;
		}

		r = issue_discard(tc, b, e, m->bio);
		if (r)
			return r;

		b = e;
	}

	return 0;
Joe Thornber's avatar
Joe Thornber committed
1041
1042
}

Joe Thornber's avatar
Joe Thornber committed
1043
static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1044
1045
1046
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1047
	struct pool *pool = tc->pool;
1048

Joe Thornber's avatar
Joe Thornber committed
1049
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1050
	if (r)
Joe Thornber's avatar
Joe Thornber committed
1051
1052
1053
1054
1055
1056
		metadata_operation_failed(pool, "dm_thin_remove_range", r);

	else if (m->maybe_shared)
		r = passdown_double_checking_shared_status(m);
	else
		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1057

Joe Thornber's avatar
Joe Thornber committed
1058
1059
1060
1061
1062
1063
1064
	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
	bio_endio(m->bio, r);
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1065
1066
}

Joe Thornber's avatar
Joe Thornber committed
1067
static void process_prepared(struct pool *pool, struct list_head *head,
1068
			     process_mapping_fn *fn)
1069
1070
1071
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1072
	struct dm_thin_new_mapping *m, *tmp;
1073
1074
1075

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1076
	list_splice_init(head, &maps);
1077
1078
1079
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1080
		(*fn)(m);
1081
1082
1083
1084
1085
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1086
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1087
{
1088
1089
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1090
1091
1092
1093
1094
1095
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1115
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1116
{
1117
	struct dm_thin_new_mapping *m = pool->next_mapping;
1118
1119
1120

	BUG_ON(!pool->next_mapping);

1121
1122
1123
1124
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1125
1126
	pool->next_mapping = NULL;

1127
	return m;
1128
1129
}

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1147
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1148
				      dm_block_t data_begin,
1149
1150
1151
1152
1153
1154
1155
1156
1157
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1158
	remap_and_issue(tc, bio, data_begin);
1159
1160
}

1161
1162
1163
/*
 * A partial copy also needs to zero the uncopied region.
 */
1164
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1165
1166
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1167
1168
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1169
1170
1171
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1172
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1173
1174

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1175
1176
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1177
1178
1179
	m->data_block = data_dest;
	m->cell = cell;

1180
1181
1182
1183
1184
1185
1186
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1187
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1188
		complete_mapping_preparation(m); /* already quiesced */
1189
1190
1191
1192
1193
1194
1195

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1196
1197
1198
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1199
1200
		struct dm_io_region from, to;

1201
		from.bdev = origin->bdev;
1202
		from.sector = data_origin * pool->sectors_per_block;
1203
		from.count = len;
1204
1205
1206

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1207
		to.count = len;
1208
1209
1210
1211

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1212
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1231
1232
		}
	}
1233
1234

	complete_mapping_preparation(m); /* drop our ref */
1235
1236
}

1237
1238
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1239
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1240
1241
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1242
1243
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1244
1245
}

1246
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1247
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1248
1249
1250
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1251
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1252

1253
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1254
	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1255
1256
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1257
1258
1259
1260
1261
1262
1263
1264
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1265
1266
1267
1268
1269
1270
1271
	if (pool->pf.zero_new_blocks) {
		if (io_overwrites_block(pool, bio))
			remap_and_issue_overwrite(tc, bio, data_block, m);
		else
			ll_zero(tc, m, data_block * pool->sectors_per_block,
				(data_block + 1) * pool->sectors_per_block);
	} else
1272
		process_prepared_mapping(m);
1273
}
1274

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1295
1296
}

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

static void check_for_space(struct pool *pool)
{
	int r;
	dm_block_t nr_free;

	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
		return;

	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
	if (r)
		return;

	if (nr_free)
		set_pool_mode(pool, PM_WRITE);
}

1315
1316
1317
1318
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
1319
static int commit(struct pool *pool)
1320
1321
1322
{
	int r;

1323
	if (get_pool_mode(pool) >= PM_READ_ONLY)
1324
1325
		return -EINVAL;

1326
	r = dm_pool_commit_metadata(pool->pmd);
1327
1328
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1329
1330
	else
		check_for_space(pool);
1331
1332
1333
1334

	return r;
}

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock