dm-thin.c 99.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/log2.h>
15
#include <linux/list.h>
16
#include <linux/rculist.h>
17
18
19
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
20
#include <linux/sort.h>
21
#include <linux/rbtree.h>
22
23
24
25
26
27

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
28
#define ENDIO_HOOK_POOL_SIZE 1024
29
#define MAPPING_POOL_SIZE 1024
30
#define COMMIT_PERIOD HZ
31
32
33
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34

35
36
37
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
70
 * including all devices that share this block.  (see dm_deferred_set code)
71
72
73
74
75
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
76
 * (process_prepared_mapping).  This act of inserting breaks some
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
static void build_data_key(struct dm_thin_device *td,
114
			   dm_block_t b, struct dm_cell_key *key)
115
116
117
118
119
120
121
{
	key->virtual = 0;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
122
			      struct dm_cell_key *key)
123
124
125
126
127
128
129
130
{
	key->virtual = 1;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

178
179
180
181
182
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
183
struct dm_thin_new_mapping;
184

185
/*
186
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
187
188
189
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
190
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
191
192
193
194
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

195
struct pool_features {
196
197
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
198
199
200
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
201
	bool error_if_no_space:1;
202
203
};

204
205
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
206
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
207
208
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

209
210
#define CELL_SORT_ARRAY_SIZE 8192

211
212
213
214
215
216
217
218
219
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
220
	uint32_t sectors_per_block;
221
	int sectors_per_block_shift;
222

223
	struct pool_features pf;
224
	bool low_water_triggered:1;	/* A dm event has been sent */
225

226
	struct dm_bio_prison *prison;
227
228
229
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
230
	struct throttle throttle;
231
	struct work_struct worker;
232
	struct delayed_work waker;
233
	struct delayed_work no_space_timeout;
234

235
	unsigned long last_commit_jiffies;
236
	unsigned ref_count;
237
238
239
240

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
241
	struct list_head prepared_discards;
242
	struct list_head active_thins;
243

244
245
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
246

Mike Snitzer's avatar
Mike Snitzer committed
247
	struct dm_thin_new_mapping *next_mapping;
248
	mempool_t *mapping_pool;
249
250
251
252

	process_bio_fn process_bio;
	process_bio_fn process_discard;

253
254
255
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

256
257
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
258
259

	struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
260
261
};

262
static enum pool_mode get_pool_mode(struct pool *pool);
263
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
264

265
266
267
268
269
270
271
272
273
274
275
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
276
277
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
278
279
280
281
282
283
};

/*
 * Target context for a thin.
 */
struct thin_c {
284
	struct list_head list;
285
	struct dm_dev *pool_dev;
286
	struct dm_dev *origin_dev;
287
	sector_t origin_size;
288
289
290
291
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
292
	bool requeue_mode:1;
293
	spinlock_t lock;
294
	struct list_head deferred_cells;
295
296
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
297
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
298
299
300
301
302
303
304

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
305
306
307
308
};

/*----------------------------------------------------------------*/

309
310
311
312
313
314
315
316
317
318
319
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

351
352
353
354
355
356
357
358
359
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

360
361
362
363
364
365
366
367
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

368
369
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
370
{
371
	dm_cell_error(pool->prison, cell, error_code);
372
373
374
	dm_bio_prison_free_cell(pool->prison, cell);
}

375
376
377
378
379
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, -EIO);
}

380
381
382
383
384
385
386
387
388
389
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

390
391
/*----------------------------------------------------------------*/

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
452
struct dm_thin_endio_hook {
453
	struct thin_c *tc;
454
455
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
456
	struct dm_thin_new_mapping *overwrite_mapping;
457
	struct rb_node rb_node;
458
459
};

460
static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
461
462
463
{
	struct bio *bio;
	struct bio_list bios;
464
	unsigned long flags;
465
466

	bio_list_init(&bios);
467

468
	spin_lock_irqsave(&tc->lock, flags);
469
470
	bio_list_merge(&bios, master);
	bio_list_init(master);
471
	spin_unlock_irqrestore(&tc->lock, flags);
472

473
474
	while ((bio = bio_list_pop(&bios)))
		bio_endio(bio, DM_ENDIO_REQUEUE);
475
476
}

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

494
495
static void requeue_io(struct thin_c *tc)
{
496
497
	requeue_bio_list(tc, &tc->deferred_bio_list);
	requeue_bio_list(tc, &tc->retry_on_resume_list);
498
	requeue_deferred_cells(tc);
499
500
}

501
static void error_thin_retry_list(struct thin_c *tc)
502
503
504
505
506
507
508
{
	struct bio *bio;
	unsigned long flags;
	struct bio_list bios;

	bio_list_init(&bios);

509
510
511
512
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_merge(&bios, &tc->retry_on_resume_list);
	bio_list_init(&tc->retry_on_resume_list);
	spin_unlock_irqrestore(&tc->lock, flags);
513
514
515
516
517

	while ((bio = bio_list_pop(&bios)))
		bio_io_error(bio);
}

518
519
520
521
522
523
524
525
526
527
static void error_retry_list(struct pool *pool)
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
		error_thin_retry_list(tc);
	rcu_read_unlock();
}

528
529
530
531
532
533
534
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

535
536
537
538
539
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

540
541
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
542
	struct pool *pool = tc->pool;
543
	sector_t block_nr = bio->bi_iter.bi_sector;
544

545
546
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
547
	else
548
		(void) sector_div(block_nr, pool->sectors_per_block);
549
550

	return block_nr;
551
552
553
554
555
}

static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
556
	sector_t bi_sector = bio->bi_iter.bi_sector;
557
558

	bio->bi_bdev = tc->pool_dev->bdev;
559
	if (block_size_is_power_of_two(pool))
560
561
562
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
563
	else
564
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
565
				 sector_div(bi_sector, pool->sectors_per_block);
566
567
}

568
569
570
571
572
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

573
574
575
576
577
578
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

579
580
581
582
583
584
585
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

586
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
587
588
589
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

590
static void issue(struct thin_c *tc, struct bio *bio)
591
592
593
594
{
	struct pool *pool = tc->pool;
	unsigned long flags;

595
596
597
598
599
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

600
	/*
601
602
603
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
604
	 */
605
606
607
608
609
610
611
612
613
614
615
616
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
617
618
}

619
620
621
622
623
624
625
626
627
628
629
630
631
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

632
633
634
635
636
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
637
struct dm_thin_new_mapping {
638
639
	struct list_head list;

640
641
	bool pass_discard:1;
	bool definitely_not_shared:1;
642

643
644
645
646
647
648
649
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

650
	int err;
651
652
653
	struct thin_c *tc;
	dm_block_t virt_block;
	dm_block_t data_block;
Mike Snitzer's avatar
Mike Snitzer committed
654
	struct dm_bio_prison_cell *cell, *cell2;
655
656
657
658
659
660
661
662
663
664
665

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

666
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
667
668
669
{
	struct pool *pool = m->tc->pool;

670
	if (atomic_dec_and_test(&m->prepare_actions)) {
671
		list_add_tail(&m->list, &pool->prepared_mappings);
672
673
674
675
		wake_worker(pool);
	}
}

676
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
677
678
679
680
681
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
682
	__complete_mapping_preparation(m);
683
684
685
	spin_unlock_irqrestore(&pool->lock, flags);
}

686
687
688
689
690
691
692
693
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

694
695
static void overwrite_endio(struct bio *bio, int err)
{
696
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
697
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
698
699

	m->err = err;
700
	complete_mapping_preparation(m);
701
702
703
704
705
706
707
708
709
710
711
712
713
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
714
715
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
716
 */
717
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
718
719
720
721
{
	struct pool *pool = tc->pool;
	unsigned long flags;

722
723
724
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
725
726
727
728

	wake_worker(pool);
}

729
730
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

731
732
733
734
735
736
737
738
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
739
{
740
	struct remap_info *info = context;
741
742
	struct bio *bio;

743
	while ((bio = bio_list_pop(&cell->bios))) {
744
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
745
			bio_list_add(&info->defer_bios, bio);
746
		else {
747
748
749
750
751
752
753
754
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
755
756
757
758
		}
	}
}

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

785
786
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
Kent Overstreet's avatar
Kent Overstreet committed
787
	if (m->bio) {
788
		m->bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
789
790
		atomic_inc(&m->bio->bi_remaining);
	}
791
	cell_error(m->tc->pool, m->cell);
792
793
794
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
795

Mike Snitzer's avatar
Mike Snitzer committed
796
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
797
798
{
	struct thin_c *tc = m->tc;
799
	struct pool *pool = tc->pool;
800
801
802
803
	struct bio *bio;
	int r;

	bio = m->bio;
Kent Overstreet's avatar
Kent Overstreet committed
804
	if (bio) {
805
		bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
806
807
		atomic_inc(&bio->bi_remaining);
	}
808
809

	if (m->err) {
810
		cell_error(pool, m->cell);
811
		goto out;
812
813
814
815
816
817
818
819
820
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
	if (r) {
821
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
822
		cell_error(pool, m->cell);
823
		goto out;
824
825
826
827
828
829
830
831
832
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
833
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
834
		bio_endio(bio, 0);
835
836
837
838
839
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
840

841
out:
842
	list_del(&m->list);
843
	mempool_free(m, pool->mapping_pool);
844
845
}

846
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
847
848
849
{
	struct thin_c *tc = m->tc;

850
	bio_io_error(m->bio);
851
852
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
853
854
855
856
857
858
	mempool_free(m, tc->pool->mapping_pool);
}

static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
859

860
	inc_all_io_entry(tc->pool, m->bio);
861
862
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
863

Joe Thornber's avatar
Joe Thornber committed
864
	if (m->pass_discard)
865
866
867
868
869
870
871
872
873
		if (m->definitely_not_shared)
			remap_and_issue(tc, m->bio, m->data_block);
		else {
			bool used = false;
			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
				bio_endio(m->bio, 0);
			else
				remap_and_issue(tc, m->bio, m->data_block);
		}
Joe Thornber's avatar
Joe Thornber committed
874
875
876
877
878
879
	else
		bio_endio(m->bio, 0);

	mempool_free(m, tc->pool->mapping_pool);
}

880
881
882
883
884
885
886
static void process_prepared_discard(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_block(tc->td, m->virt_block);
	if (r)
887
		DMERR_LIMIT("dm_thin_remove_block() failed");
888
889
890
891

	process_prepared_discard_passdown(m);
}

Joe Thornber's avatar
Joe Thornber committed
892
static void process_prepared(struct pool *pool, struct list_head *head,
893
			     process_mapping_fn *fn)
894
895
896
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
897
	struct dm_thin_new_mapping *m, *tmp;
898
899
900

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
901
	list_splice_init(head, &maps);
902
903
904
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
905
		(*fn)(m);
906
907
908
909
910
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
911
static int io_overlaps_block(struct pool *pool, struct bio *bio)
912
{
913
914
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
915
916
917
918
919
920
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
940
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
941
{
942
	struct dm_thin_new_mapping *m = pool->next_mapping;
943
944
945

	BUG_ON(!pool->next_mapping);

946
947
948
949
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

950
951
	pool->next_mapping = NULL;

952
	return m;
953
954
}

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

972
973
974
975
976
977
978
979
980
981
982
983
984
985
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
				      dm_block_t data_block,
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
	remap_and_issue(tc, bio, data_block);
}

986
987
988
/*
 * A partial copy also needs to zero the uncopied region.
 */
989
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
990
991
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
992
993
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
994
995
996
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
997
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
998
999
1000
1001
1002
1003

	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_dest;
	m->cell = cell;

1004
1005
1006
1007
1008
1009
1010
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1011
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1012
		complete_mapping_preparation(m); /* already quiesced */
1013
1014
1015
1016
1017
1018
1019

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1020
1021
1022
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1023
1024
		struct dm_io_region from, to;

1025
		from.bdev = origin->bdev;
1026
		from.sector = data_origin * pool->sectors_per_block;
1027
		from.count = len;
1028
1029
1030

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1031
		to.count = len;
1032
1033
1034
1035

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1036
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1055
1056
		}
	}
1057
1058

	complete_mapping_preparation(m); /* drop our ref */
1059
1060
}

1061
1062
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1063
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1064
1065
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1066
1067
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1068
1069
}

1070
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1071
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1072
1073
1074
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1075
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1076

1077
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1088
	if (!pool->pf.zero_new_blocks)
1089
1090
		process_prepared_mapping(m);

1091
1092
	else if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_block, m);
1093

1094
	else
1095
1096
1097
1098
		ll_zero(tc, m,
			data_block * pool->sectors_per_block,
			(data_block + 1) * pool->sectors_per_block);
}
1099

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1120
1121
}

1122
1123
1124
1125
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
1126
static int commit(struct pool *pool)
1127
1128
1129
{
	int r;

1130
	if (get_pool_mode(pool) >= PM_READ_ONLY)
1131
1132
		return -EINVAL;

1133
	r = dm_pool_commit_metadata(pool->pmd);
1134
1135
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1136
1137
1138
1139

	return r;
}

1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}
}

1154
1155
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

1156
1157
1158
1159
1160
1161
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	struct pool *pool = tc->pool;

1162
	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1163
1164
		return -EINVAL;

1165
	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1166
1167
	if (r) {
		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1168
		return r;
1169
	}
1170

1171
	check_low_water_mark(pool, free_blocks);
1172
1173

	if (!free_blocks) {
1174
1175
1176
1177
		/*
		 * Try to commit to see if that will free up some
		 * more space.
		 */
1178
1179
1180
		r = commit(pool);
		if (r)
			return r;
1181

1182
		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1183
1184
		if (r) {
			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1185
			return r;
1186
		}
1187

1188
		if (!free_blocks) {
1189
			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1190
			return -ENOSPC;
1191
1192
1193
1194
		}
	}

	r = dm_pool_alloc_data_block(pool->pmd, result);
1195
	if (r) {
1196
		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1197
		return r;
1198
	}
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

	return 0;
}

/*
 * If we have run out of space, queue bios until the device is
 * resumed, presumably after having been reloaded with more space.
 */
static void retry_on_resume(struct bio *bio)
{
1209
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1210
	struct thin_c *tc = h->tc;
1211
1212
	unsigned long flags;

1213
1214
1215
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_add(&tc->retry_on_resume_list, bio);
	spin_unlock_irqrestore(&tc->lock, flags);
1216
1217
}

1218
static int should_error_unserviceable_bio(struct pool *pool)
1219
{
1220
1221
1222
1223
1224
1225
	enum pool_mode m = get_pool_mode(pool);

	switch (m) {
	case PM_WRITE:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1226
		return -EIO;
1227
1228

	case PM_OUT_OF_DATA_SPACE:
1229
		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1230
1231
1232

	case PM_READ_ONLY:
	case PM_FAIL:
1233
		return -EIO;
1234
1235
1236
	default:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1237
		return -EIO;
1238
1239
	}
}
1240

1241
1242
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
{
1243
1244
1245
1246
	int error = should_error_unserviceable_bio(pool);

	if (error)
		bio_endio(bio, error);
1247
1248
	else
		retry_on_resume(bio);
1249
1250
}

1251
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1252
1253
1254
{
	struct bio *bio;
	struct bio_list bios;
1255
	int error;
1256

1257
1258
1259
	error = should_error_unserviceable_bio(pool);
	if (error) {
		cell_error_with_code(pool, cell, error);
1260
1261
1262
		return;
	}

1263
	bio_list_init(&bios);
1264
	cell_release(pool, cell, &bios);
1265

1266
1267
	while ((bio = bio_list_pop(&bios)))
		retry_on_resume(bio);
1268
1269
}

1270
static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
Joe Thornber's avatar
Joe Thornber committed
1271
1272
{
	int r;
1273
	struct bio *bio = cell->holder;
Joe Thornber's avatar
Joe Thornber committed
1274
	struct pool *pool = tc->pool;
1275
1276
	struct dm_bio_prison_cell *cell2;
	struct dm_cell_key key2;
Joe Thornber's avatar
Joe Thornber committed
1277
1278
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;
Mike Snitzer's avatar
Mike Snitzer committed
1279
	struct dm_thin_new_mapping *m;
Joe Thornber's avatar
Joe Thornber committed
1280

1281
1282
	if (tc->requeue_mode) {
		cell_requeue(pool, cell);
Joe Thornber's avatar
Joe Thornber committed
1283
		return;
1284
	}
Joe Thornber's avatar
Joe Thornber committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		/*
		 * Check nobody is fiddling with this pool block.  This can
		 * happen if someone's in the process of breaking sharing