dm-thin.c 96.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/log2.h>
15
#include <linux/list.h>
16
#include <linux/rculist.h>
17
18
19
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
20
#include <linux/rbtree.h>
21
22
23
24
25
26

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
27
#define ENDIO_HOOK_POOL_SIZE 1024
28
#define MAPPING_POOL_SIZE 1024
29
#define COMMIT_PERIOD HZ
30
31
32
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33

34
35
36
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
69
 * including all devices that share this block.  (see dm_deferred_set code)
70
71
72
73
74
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
75
 * (process_prepared_mapping).  This act of inserting breaks some
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
static void build_data_key(struct dm_thin_device *td,
113
			   dm_block_t b, struct dm_cell_key *key)
114
115
116
117
118
119
120
{
	key->virtual = 0;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121
			      struct dm_cell_key *key)
122
123
124
125
126
127
128
129
{
	key->virtual = 1;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

177
178
179
180
181
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
182
struct dm_thin_new_mapping;
183

184
/*
185
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
186
187
188
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
189
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
190
191
192
193
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

194
struct pool_features {
195
196
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
197
198
199
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
200
	bool error_if_no_space:1;
201
202
};

203
204
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
205
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
206
207
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

208
209
210
211
212
213
214
215
216
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
217
	uint32_t sectors_per_block;
218
	int sectors_per_block_shift;
219

220
	struct pool_features pf;
221
	bool low_water_triggered:1;	/* A dm event has been sent */
222

223
	struct dm_bio_prison *prison;
224
225
226
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
227
	struct throttle throttle;
228
	struct work_struct worker;
229
	struct delayed_work waker;
230
	struct delayed_work no_space_timeout;
231

232
	unsigned long last_commit_jiffies;
233
	unsigned ref_count;
234
235
236
237

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
238
	struct list_head prepared_discards;
239
	struct list_head active_thins;
240

241
242
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
243

Mike Snitzer's avatar
Mike Snitzer committed
244
	struct dm_thin_new_mapping *next_mapping;
245
	mempool_t *mapping_pool;
246
247
248
249

	process_bio_fn process_bio;
	process_bio_fn process_discard;

250
251
252
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

253
254
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
255
256
};

257
static enum pool_mode get_pool_mode(struct pool *pool);
258
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
259

260
261
262
263
264
265
266
267
268
269
270
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
271
272
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
273
274
275
276
277
278
};

/*
 * Target context for a thin.
 */
struct thin_c {
279
	struct list_head list;
280
	struct dm_dev *pool_dev;
281
	struct dm_dev *origin_dev;
282
	sector_t origin_size;
283
284
285
286
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
287
	bool requeue_mode:1;
288
	spinlock_t lock;
289
	struct list_head deferred_cells;
290
291
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
292
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
293
294
295
296
297
298
299

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
300
301
302
303
};

/*----------------------------------------------------------------*/

304
305
306
307
308
309
310
311
312
313
314
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

354
355
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
356
{
357
	dm_cell_error(pool->prison, cell, error_code);
358
359
360
	dm_bio_prison_free_cell(pool->prison, cell);
}

361
362
363
364
365
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, -EIO);
}

366
367
368
369
370
371
372
373
374
375
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

376
377
/*----------------------------------------------------------------*/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
438
struct dm_thin_endio_hook {
439
	struct thin_c *tc;
440
441
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
442
	struct dm_thin_new_mapping *overwrite_mapping;
443
	struct rb_node rb_node;
444
445
};

446
static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
447
448
449
{
	struct bio *bio;
	struct bio_list bios;
450
	unsigned long flags;
451
452

	bio_list_init(&bios);
453

454
	spin_lock_irqsave(&tc->lock, flags);
455
456
	bio_list_merge(&bios, master);
	bio_list_init(master);
457
	spin_unlock_irqrestore(&tc->lock, flags);
458

459
460
	while ((bio = bio_list_pop(&bios)))
		bio_endio(bio, DM_ENDIO_REQUEUE);
461
462
}

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

480
481
static void requeue_io(struct thin_c *tc)
{
482
483
	requeue_bio_list(tc, &tc->deferred_bio_list);
	requeue_bio_list(tc, &tc->retry_on_resume_list);
484
	requeue_deferred_cells(tc);
485
486
}

487
static void error_thin_retry_list(struct thin_c *tc)
488
489
490
491
492
493
494
{
	struct bio *bio;
	unsigned long flags;
	struct bio_list bios;

	bio_list_init(&bios);

495
496
497
498
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_merge(&bios, &tc->retry_on_resume_list);
	bio_list_init(&tc->retry_on_resume_list);
	spin_unlock_irqrestore(&tc->lock, flags);
499
500
501
502
503

	while ((bio = bio_list_pop(&bios)))
		bio_io_error(bio);
}

504
505
506
507
508
509
510
511
512
513
static void error_retry_list(struct pool *pool)
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
		error_thin_retry_list(tc);
	rcu_read_unlock();
}

514
515
516
517
518
519
520
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

521
522
523
524
525
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

526
527
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
528
	struct pool *pool = tc->pool;
529
	sector_t block_nr = bio->bi_iter.bi_sector;
530

531
532
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
533
	else
534
		(void) sector_div(block_nr, pool->sectors_per_block);
535
536

	return block_nr;
537
538
539
540
541
}

static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
542
	sector_t bi_sector = bio->bi_iter.bi_sector;
543
544

	bio->bi_bdev = tc->pool_dev->bdev;
545
	if (block_size_is_power_of_two(pool))
546
547
548
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
549
	else
550
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
551
				 sector_div(bi_sector, pool->sectors_per_block);
552
553
}

554
555
556
557
558
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

559
560
561
562
563
564
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

565
566
567
568
569
570
571
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

572
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
573
574
575
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

576
static void issue(struct thin_c *tc, struct bio *bio)
577
578
579
580
{
	struct pool *pool = tc->pool;
	unsigned long flags;

581
582
583
584
585
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

586
	/*
587
588
589
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
590
	 */
591
592
593
594
595
596
597
598
599
600
601
602
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
603
604
}

605
606
607
608
609
610
611
612
613
614
615
616
617
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

618
619
620
621
622
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
623
struct dm_thin_new_mapping {
624
625
	struct list_head list;

626
627
	bool pass_discard:1;
	bool definitely_not_shared:1;
628

629
630
631
632
633
634
635
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

636
	int err;
637
638
639
	struct thin_c *tc;
	dm_block_t virt_block;
	dm_block_t data_block;
Mike Snitzer's avatar
Mike Snitzer committed
640
	struct dm_bio_prison_cell *cell, *cell2;
641
642
643
644
645
646
647
648
649
650
651

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

652
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
653
654
655
{
	struct pool *pool = m->tc->pool;

656
	if (atomic_dec_and_test(&m->prepare_actions)) {
657
		list_add_tail(&m->list, &pool->prepared_mappings);
658
659
660
661
		wake_worker(pool);
	}
}

662
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
663
664
665
666
667
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
668
	__complete_mapping_preparation(m);
669
670
671
	spin_unlock_irqrestore(&pool->lock, flags);
}

672
673
674
675
676
677
678
679
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

680
681
static void overwrite_endio(struct bio *bio, int err)
{
682
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
683
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
684
685

	m->err = err;
686
	complete_mapping_preparation(m);
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
 * This sends the bios in the cell back to the deferred_bios list.
 */
Joe Thornber's avatar
Joe Thornber committed
702
static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
703
704
705
706
{
	struct pool *pool = tc->pool;
	unsigned long flags;

707
708
709
	spin_lock_irqsave(&tc->lock, flags);
	cell_release(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
710
711
712
713
714

	wake_worker(pool);
}

/*
715
 * Same as cell_defer above, except it omits the original holder of the cell.
716
 */
717
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
718
719
720
721
{
	struct pool *pool = tc->pool;
	unsigned long flags;

722
723
724
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
725
726
727
728

	wake_worker(pool);
}

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct bio_list bios;

	bio_list_init(&bios);
	cell_release_no_holder(tc->pool, cell, &bios);

	while ((bio = bio_list_pop(&bios))) {
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
			thin_defer_bio(tc, bio);
		else {
			inc_all_io_entry(tc->pool, bio);
			remap_and_issue(tc, bio, block);
		}
	}
}

751
752
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
Kent Overstreet's avatar
Kent Overstreet committed
753
	if (m->bio) {
754
		m->bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
755
756
		atomic_inc(&m->bio->bi_remaining);
	}
757
	cell_error(m->tc->pool, m->cell);
758
759
760
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
761

Mike Snitzer's avatar
Mike Snitzer committed
762
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
763
764
{
	struct thin_c *tc = m->tc;
765
	struct pool *pool = tc->pool;
766
767
768
769
	struct bio *bio;
	int r;

	bio = m->bio;
Kent Overstreet's avatar
Kent Overstreet committed
770
	if (bio) {
771
		bio->bi_end_io = m->saved_bi_end_io;
Kent Overstreet's avatar
Kent Overstreet committed
772
773
		atomic_inc(&bio->bi_remaining);
	}
774
775

	if (m->err) {
776
		cell_error(pool, m->cell);
777
		goto out;
778
779
780
781
782
783
784
785
786
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
	if (r) {
787
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
788
		cell_error(pool, m->cell);
789
		goto out;
790
791
792
793
794
795
796
797
798
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
799
		cell_defer_no_holder(tc, m->cell);
800
801
		bio_endio(bio, 0);
	} else
Joe Thornber's avatar
Joe Thornber committed
802
		cell_defer(tc, m->cell);
803

804
out:
805
	list_del(&m->list);
806
	mempool_free(m, pool->mapping_pool);
807
808
}

809
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
810
811
812
{
	struct thin_c *tc = m->tc;

813
	bio_io_error(m->bio);
814
815
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
816
817
818
819
820
821
	mempool_free(m, tc->pool->mapping_pool);
}

static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
822

823
	inc_all_io_entry(tc->pool, m->bio);
824
825
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
826

Joe Thornber's avatar
Joe Thornber committed
827
	if (m->pass_discard)
828
829
830
831
832
833
834
835
836
		if (m->definitely_not_shared)
			remap_and_issue(tc, m->bio, m->data_block);
		else {
			bool used = false;
			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
				bio_endio(m->bio, 0);
			else
				remap_and_issue(tc, m->bio, m->data_block);
		}
Joe Thornber's avatar
Joe Thornber committed
837
838
839
840
841
842
	else
		bio_endio(m->bio, 0);

	mempool_free(m, tc->pool->mapping_pool);
}

843
844
845
846
847
848
849
static void process_prepared_discard(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_block(tc->td, m->virt_block);
	if (r)
850
		DMERR_LIMIT("dm_thin_remove_block() failed");
851
852
853
854

	process_prepared_discard_passdown(m);
}

Joe Thornber's avatar
Joe Thornber committed
855
static void process_prepared(struct pool *pool, struct list_head *head,
856
			     process_mapping_fn *fn)
857
858
859
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
860
	struct dm_thin_new_mapping *m, *tmp;
861
862
863

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
864
	list_splice_init(head, &maps);
865
866
867
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
868
		(*fn)(m);
869
870
871
872
873
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
874
static int io_overlaps_block(struct pool *pool, struct bio *bio)
875
{
876
877
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
878
879
880
881
882
883
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
903
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
904
{
905
	struct dm_thin_new_mapping *m = pool->next_mapping;
906
907
908

	BUG_ON(!pool->next_mapping);

909
910
911
912
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

913
914
	pool->next_mapping = NULL;

915
	return m;
916
917
}

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

935
936
937
938
939
940
941
942
943
944
945
946
947
948
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
				      dm_block_t data_block,
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
	remap_and_issue(tc, bio, data_block);
}

949
950
951
/*
 * A partial copy also needs to zero the uncopied region.
 */
952
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
953
954
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
955
956
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
957
958
959
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
960
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
961
962
963
964
965
966

	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_dest;
	m->cell = cell;

967
968
969
970
971
972
973
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

974
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
975
		complete_mapping_preparation(m); /* already quiesced */
976
977
978
979
980
981
982

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
983
984
985
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
986
987
		struct dm_io_region from, to;

988
		from.bdev = origin->bdev;
989
		from.sector = data_origin * pool->sectors_per_block;
990
		from.count = len;
991
992
993

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
994
		to.count = len;
995
996
997
998

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
999
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1018
1019
		}
	}
1020
1021

	complete_mapping_preparation(m); /* drop our ref */
1022
1023
}

1024
1025
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1026
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1027
1028
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1029
1030
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1031
1032
}

1033
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1034
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1035
1036
1037
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1038
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1039

1040
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1051
	if (!pool->pf.zero_new_blocks)
1052
1053
		process_prepared_mapping(m);

1054
1055
	else if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_block, m);
1056

1057
	else
1058
1059
1060
1061
		ll_zero(tc, m,
			data_block * pool->sectors_per_block,
			(data_block + 1) * pool->sectors_per_block);
}
1062

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
				   struct dm_bio_prison_cell *cell, struct bio *bio)
{
	struct pool *pool = tc->pool;
	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;

	if (virt_block_end <= tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      pool->sectors_per_block);

	else if (virt_block_begin < tc->origin_size)
		schedule_copy(tc, virt_block, tc->origin_dev,
			      virt_block, data_dest, cell, bio,
			      tc->origin_size - virt_block_begin);

	else
		schedule_zero(tc, virt_block, data_dest, cell, bio);
1083
1084
}

1085
1086
1087
1088
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
1089
static int commit(struct pool *pool)
1090
1091
1092
{
	int r;

1093
	if (get_pool_mode(pool) >= PM_READ_ONLY)
1094
1095
		return -EINVAL;

1096
	r = dm_pool_commit_metadata(pool->pmd);
1097
1098
	if (r)
		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1099
1100
1101
1102

	return r;
}

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
{
	unsigned long flags;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
		DMWARN("%s: reached low water mark for data device: sending event.",
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = true;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}
}

1117
1118
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);

1119
1120
1121
1122
1123
1124
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	struct pool *pool = tc->pool;

1125
	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1126
1127
		return -EINVAL;

1128
	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1129
1130
	if (r) {
		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1131
		return r;
1132
	}
1133

1134
	check_low_water_mark(pool, free_blocks);
1135
1136

	if (!free_blocks) {
1137
1138
1139
1140
		/*
		 * Try to commit to see if that will free up some
		 * more space.
		 */
1141
1142
1143
		r = commit(pool);
		if (r)
			return r;
1144

1145
		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1146
1147
		if (r) {
			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1148
			return r;
1149
		}
1150

1151
		if (!free_blocks) {
1152
			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1153
			return -ENOSPC;
1154
1155
1156
1157
		}
	}

	r = dm_pool_alloc_data_block(pool->pmd, result);
1158
	if (r) {
1159
		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1160
		return r;
1161
	}
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

	return 0;
}

/*
 * If we have run out of space, queue bios until the device is
 * resumed, presumably after having been reloaded with more space.
 */
static void retry_on_resume(struct bio *bio)
{
1172
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1173
	struct thin_c *tc = h->tc;
1174
1175
	unsigned long flags;

1176
1177
1178
	spin_lock_irqsave(&tc->lock, flags);
	bio_list_add(&tc->retry_on_resume_list, bio);
	spin_unlock_irqrestore(&tc->lock, flags);
1179
1180
}

1181
static int should_error_unserviceable_bio(struct pool *pool)
1182
{
1183
1184
1185
1186
1187
1188
	enum pool_mode m = get_pool_mode(pool);

	switch (m) {
	case PM_WRITE:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1189
		return -EIO;
1190
1191

	case PM_OUT_OF_DATA_SPACE:
1192
		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1193
1194
1195

	case PM_READ_ONLY:
	case PM_FAIL:
1196
		return -EIO;
1197
1198
1199
	default:
		/* Shouldn't get here */
		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1200
		return -EIO;
1201
1202
	}
}
1203

1204
1205
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
{
1206
1207
1208
1209
	int error = should_error_unserviceable_bio(pool);

	if (error)
		bio_endio(bio, error);
1210
1211
	else
		retry_on_resume(bio);
1212
1213
}

1214
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1215
1216
1217
{
	struct bio *bio;
	struct bio_list bios;
1218
	int error;
1219

1220
1221
1222
	error = should_error_unserviceable_bio(pool);
	if (error) {
		cell_error_with_code(pool, cell, error);
1223
1224
1225
		return;
	}

1226
	bio_list_init(&bios);
1227
	cell_release(pool, cell, &bios);
1228

1229
1230
	error = should_error_unserviceable_bio(pool);
	if (error)
1231
		while ((bio = bio_list_pop(&bios)))
1232
			bio_endio(bio, error);
1233
1234
1235
	else
		while ((bio = bio_list_pop(&bios)))
			retry_on_resume(bio);
1236
1237
}

1238
static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
Joe Thornber's avatar
Joe Thornber committed
1239
1240
{
	int r;
1241
	struct bio *bio = cell->holder;
Joe Thornber's avatar
Joe Thornber committed
1242
	struct pool *pool = tc->pool;
1243
1244
	struct dm_bio_prison_cell *cell2;
	struct dm_cell_key key2;
Joe Thornber's avatar
Joe Thornber committed
1245
1246
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;
Mike Snitzer's avatar
Mike Snitzer committed
1247
	struct dm_thin_new_mapping *m;
Joe Thornber's avatar
Joe Thornber committed
1248

1249
1250
	if (tc->requeue_mode) {
		cell_requeue(pool, cell);
Joe Thornber's avatar
Joe Thornber committed
1251
		return;
1252
	}
Joe Thornber's avatar
Joe Thornber committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		/*
		 * Check nobody is fiddling with this pool block.  This can
		 * happen if someone's in the process of breaking sharing
		 * on this block.
		 */
		build_data_key(tc->td, lookup_result.block, &key2);
1263
		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1264
			cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
			break;
		}

		if (io_overlaps_block(pool, bio)) {
			/*
			 * IO may still be going to the destination block.  We must
			 * quiesce before we can do the removal.
			 */
			m = get_next_mapping(pool);
			m->tc = tc;
1275
1276
			m->pass_discard = pool->pf.discard_passdown;
			m->definitely_not_shared = !lookup_result.shared;
Joe Thornber's avatar
Joe Thornber committed
1277
1278
1279
1280
1281
1282
			m->virt_block = block;
			m->data_block = lookup_result.block;
			m->cell = cell;
			m->cell2 = cell2;
			m->bio = bio;

1283
1284
1285
			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
				pool->process_prepared_discard(m);

Joe Thornber's avatar
Joe Thornber committed
1286
		} else {
1287
			inc_all_io_entry(pool, bio);
1288
1289
			cell_defer_no_holder(tc, cell);
			cell_defer_no_holder(tc, cell2);