auth.c 23.9 KB
Newer Older
1
/* SCTP kernel implementation
2
3
 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
 *
4
 * This file is part of the SCTP kernel implementation
5
 *
6
 * This SCTP implementation is free software;
7
8
9
10
11
 * you can redistribute it and/or modify it under the terms of
 * the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
12
 * This SCTP implementation is distributed in the hope that it
13
14
15
16
17
18
 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 *                 ************************
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
19
20
 * along with GNU CC; see the file COPYING.  If not, see
 * <http://www.gnu.org/licenses/>.
21
22
23
 *
 * Please send any bug reports or fixes you make to the
 * email address(es):
24
 *    lksctp developers <linux-sctp@vger.kernel.org>
25
26
27
28
29
 *
 * Written or modified by:
 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 */

Herbert Xu's avatar
Herbert Xu committed
30
#include <crypto/hash.h>
31
#include <linux/slab.h>
32
33
34
35
36
37
38
39
40
41
42
43
#include <linux/types.h>
#include <linux/scatterlist.h>
#include <net/sctp/sctp.h>
#include <net/sctp/auth.h>

static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
	{
		/* id 0 is reserved.  as all 0 */
		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
	},
	{
		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44
		.hmac_name = "hmac(sha1)",
45
46
47
48
49
50
		.hmac_len = SCTP_SHA1_SIG_SIZE,
	},
	{
		/* id 2 is reserved as well */
		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
	},
51
#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52
53
	{
		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54
		.hmac_name = "hmac(sha256)",
55
56
		.hmac_len = SCTP_SHA256_SIG_SIZE,
	}
57
#endif
58
59
60
61
62
63
64
65
66
};


void sctp_auth_key_put(struct sctp_auth_bytes *key)
{
	if (!key)
		return;

	if (atomic_dec_and_test(&key->refcnt)) {
67
		kzfree(key);
68
69
70
71
72
73
74
75
76
		SCTP_DBG_OBJCNT_DEC(keys);
	}
}

/* Create a new key structure of a given length */
static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
{
	struct sctp_auth_bytes *key;

77
	/* Verify that we are not going to overflow INT_MAX */
78
	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79
80
		return NULL;

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
	/* Allocate the shared key */
	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
	if (!key)
		return NULL;

	key->len = key_len;
	atomic_set(&key->refcnt, 1);
	SCTP_DBG_OBJCNT_INC(keys);

	return key;
}

/* Create a new shared key container with a give key id */
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
{
	struct sctp_shared_key *new;

	/* Allocate the shared key container */
	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
	if (!new)
		return NULL;

	INIT_LIST_HEAD(&new->key_list);
	new->key_id = key_id;

	return new;
}

Lucas De Marchi's avatar
Lucas De Marchi committed
109
/* Free the shared key structure */
110
static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111
112
113
114
115
116
117
{
	BUG_ON(!list_empty(&sh_key->key_list));
	sctp_auth_key_put(sh_key->key);
	sh_key->key = NULL;
	kfree(sh_key);
}

Lucas De Marchi's avatar
Lucas De Marchi committed
118
/* Destroy the entire key list.  This is done during the
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
 * associon and endpoint free process.
 */
void sctp_auth_destroy_keys(struct list_head *keys)
{
	struct sctp_shared_key *ep_key;
	struct sctp_shared_key *tmp;

	if (list_empty(keys))
		return;

	key_for_each_safe(ep_key, tmp, keys) {
		list_del_init(&ep_key->key_list);
		sctp_auth_shkey_free(ep_key);
	}
}

/* Compare two byte vectors as numbers.  Return values
 * are:
 * 	  0 - vectors are equal
138
139
 * 	< 0 - vector 1 is smaller than vector2
 * 	> 0 - vector 1 is greater than vector2
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
 *
 * Algorithm is:
 * 	This is performed by selecting the numerically smaller key vector...
 *	If the key vectors are equal as numbers but differ in length ...
 *	the shorter vector is considered smaller
 *
 * Examples (with small values):
 * 	000123456789 > 123456789 (first number is longer)
 * 	000123456789 < 234567891 (second number is larger numerically)
 * 	123456789 > 2345678 	 (first number is both larger & longer)
 */
static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
			      struct sctp_auth_bytes *vector2)
{
	int diff;
	int i;
	const __u8 *longer;

	diff = vector1->len - vector2->len;
	if (diff) {
		longer = (diff > 0) ? vector1->data : vector2->data;

		/* Check to see if the longer number is
		 * lead-zero padded.  If it is not, it
		 * is automatically larger numerically.
		 */
166
		for (i = 0; i < abs(diff); i++) {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
			if (longer[i] != 0)
				return diff;
		}
	}

	/* lengths are the same, compare numbers */
	return memcmp(vector1->data, vector2->data, vector1->len);
}

/*
 * Create a key vector as described in SCTP-AUTH, Section 6.1
 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 *    parameter sent by each endpoint are concatenated as byte vectors.
 *    These parameters include the parameter type, parameter length, and
 *    the parameter value, but padding is omitted; all padding MUST be
 *    removed from this concatenation before proceeding with further
 *    computation of keys.  Parameters which were not sent are simply
 *    omitted from the concatenation process.  The resulting two vectors
 *    are called the two key vectors.
 */
static struct sctp_auth_bytes *sctp_auth_make_key_vector(
			sctp_random_param_t *random,
			sctp_chunks_param_t *chunks,
			sctp_hmac_algo_param_t *hmacs,
			gfp_t gfp)
{
	struct sctp_auth_bytes *new;
	__u32	len;
	__u32	offset = 0;
196
	__u16	random_len, hmacs_len, chunks_len = 0;
197

198
199
200
201
202
203
	random_len = ntohs(random->param_hdr.length);
	hmacs_len = ntohs(hmacs->param_hdr.length);
	if (chunks)
		chunks_len = ntohs(chunks->param_hdr.length);

	len = random_len + hmacs_len + chunks_len;
204

205
	new = sctp_auth_create_key(len, gfp);
206
207
208
	if (!new)
		return NULL;

209
210
	memcpy(new->data, random, random_len);
	offset += random_len;
211
212

	if (chunks) {
213
214
		memcpy(new->data + offset, chunks, chunks_len);
		offset += chunks_len;
215
216
	}

217
	memcpy(new->data + offset, hmacs, hmacs_len);
218
219
220
221
222
223

	return new;
}


/* Make a key vector based on our local parameters */
224
static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225
226
227
228
				    const struct sctp_association *asoc,
				    gfp_t gfp)
{
	return sctp_auth_make_key_vector(
229
230
231
				    (sctp_random_param_t *)asoc->c.auth_random,
				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232
233
234
235
				    gfp);
}

/* Make a key vector based on peer's parameters */
236
static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
				    const struct sctp_association *asoc,
				    gfp_t gfp)
{
	return sctp_auth_make_key_vector(asoc->peer.peer_random,
					 asoc->peer.peer_chunks,
					 asoc->peer.peer_hmacs,
					 gfp);
}


/* Set the value of the association shared key base on the parameters
 * given.  The algorithm is:
 *    From the endpoint pair shared keys and the key vectors the
 *    association shared keys are computed.  This is performed by selecting
 *    the numerically smaller key vector and concatenating it to the
 *    endpoint pair shared key, and then concatenating the numerically
 *    larger key vector to that.  The result of the concatenation is the
 *    association shared key.
 */
static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
			struct sctp_shared_key *ep_key,
			struct sctp_auth_bytes *first_vector,
			struct sctp_auth_bytes *last_vector,
			gfp_t gfp)
{
	struct sctp_auth_bytes *secret;
	__u32 offset = 0;
	__u32 auth_len;

	auth_len = first_vector->len + last_vector->len;
	if (ep_key->key)
		auth_len += ep_key->key->len;

	secret = sctp_auth_create_key(auth_len, gfp);
	if (!secret)
		return NULL;

	if (ep_key->key) {
		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
		offset += ep_key->key->len;
	}

	memcpy(secret->data + offset, first_vector->data, first_vector->len);
	offset += first_vector->len;

	memcpy(secret->data + offset, last_vector->data, last_vector->len);

	return secret;
}

/* Create an association shared key.  Follow the algorithm
 * described in SCTP-AUTH, Section 6.1
 */
static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
				 const struct sctp_association *asoc,
				 struct sctp_shared_key *ep_key,
				 gfp_t gfp)
{
	struct sctp_auth_bytes *local_key_vector;
	struct sctp_auth_bytes *peer_key_vector;
	struct sctp_auth_bytes	*first_vector,
				*last_vector;
	struct sctp_auth_bytes	*secret = NULL;
	int	cmp;


	/* Now we need to build the key vectors
	 * SCTP-AUTH , Section 6.1
	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
	 *    parameter sent by each endpoint are concatenated as byte vectors.
	 *    These parameters include the parameter type, parameter length, and
	 *    the parameter value, but padding is omitted; all padding MUST be
	 *    removed from this concatenation before proceeding with further
	 *    computation of keys.  Parameters which were not sent are simply
	 *    omitted from the concatenation process.  The resulting two vectors
	 *    are called the two key vectors.
	 */

	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);

	if (!peer_key_vector || !local_key_vector)
		goto out;

Lucas De Marchi's avatar
Lucas De Marchi committed
321
	/* Figure out the order in which the key_vectors will be
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
	 * added to the endpoint shared key.
	 * SCTP-AUTH, Section 6.1:
	 *   This is performed by selecting the numerically smaller key
	 *   vector and concatenating it to the endpoint pair shared
	 *   key, and then concatenating the numerically larger key
	 *   vector to that.  If the key vectors are equal as numbers
	 *   but differ in length, then the concatenation order is the
	 *   endpoint shared key, followed by the shorter key vector,
	 *   followed by the longer key vector.  Otherwise, the key
	 *   vectors are identical, and may be concatenated to the
	 *   endpoint pair key in any order.
	 */
	cmp = sctp_auth_compare_vectors(local_key_vector,
					peer_key_vector);
	if (cmp < 0) {
		first_vector = local_key_vector;
		last_vector = peer_key_vector;
	} else {
		first_vector = peer_key_vector;
		last_vector = local_key_vector;
	}

	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
					    gfp);
out:
347
348
	sctp_auth_key_put(local_key_vector);
	sctp_auth_key_put(peer_key_vector);
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

	return secret;
}

/*
 * Populate the association overlay list with the list
 * from the endpoint.
 */
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
				struct sctp_association *asoc,
				gfp_t gfp)
{
	struct sctp_shared_key *sh_key;
	struct sctp_shared_key *new;

	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));

	key_for_each(sh_key, &ep->endpoint_shared_keys) {
		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
		if (!new)
			goto nomem;

		new->key = sh_key->key;
		sctp_auth_key_hold(new->key);
		list_add(&new->key_list, &asoc->endpoint_shared_keys);
	}

	return 0;

nomem:
	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
	return -ENOMEM;
}


384
/* Public interface to create the association shared key.
385
386
387
388
389
390
 * See code above for the algorithm.
 */
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
{
	struct sctp_auth_bytes	*secret;
	struct sctp_shared_key *ep_key;
391
	struct sctp_chunk *chunk;
392
393
394
395

	/* If we don't support AUTH, or peer is not capable
	 * we don't need to do anything.
	 */
396
	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
		return 0;

	/* If the key_id is non-zero and we couldn't find an
	 * endpoint pair shared key, we can't compute the
	 * secret.
	 * For key_id 0, endpoint pair shared key is a NULL key.
	 */
	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
	BUG_ON(!ep_key);

	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
	if (!secret)
		return -ENOMEM;

	sctp_auth_key_put(asoc->asoc_shared_key);
	asoc->asoc_shared_key = secret;

414
415
416
417
418
419
420
421
	/* Update send queue in case any chunk already in there now
	 * needs authenticating
	 */
	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
			chunk->auth = 1;
	}

422
423
424
425
426
427
428
429
430
	return 0;
}


/* Find the endpoint pair shared key based on the key_id */
struct sctp_shared_key *sctp_auth_get_shkey(
				const struct sctp_association *asoc,
				__u16 key_id)
{
431
	struct sctp_shared_key *key;
432
433
434
435

	/* First search associations set of endpoint pair shared keys */
	key_for_each(key, &asoc->endpoint_shared_keys) {
		if (key->key_id == key_id)
436
			return key;
437
438
	}

439
	return NULL;
440
441
442
443
444
445
446
447
448
449
450
}

/*
 * Initialize all the possible digest transforms that we can use.  Right now
 * now, the supported digests are SHA1 and SHA256.  We do this here once
 * because of the restrictiong that transforms may only be allocated in
 * user context.  This forces us to pre-allocated all possible transforms
 * at the endpoint init time.
 */
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
{
Herbert Xu's avatar
Herbert Xu committed
451
	struct crypto_shash *tfm = NULL;
452
453
	__u16   id;

454
455
	/* If AUTH extension is disabled, we are done */
	if (!ep->auth_enable) {
456
457
458
459
		ep->auth_hmacs = NULL;
		return 0;
	}

460
	/* If the transforms are already allocated, we are done */
461
462
463
464
	if (ep->auth_hmacs)
		return 0;

	/* Allocated the array of pointers to transorms */
Herbert Xu's avatar
Herbert Xu committed
465
466
	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
				 SCTP_AUTH_NUM_HMACS, gfp);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
	if (!ep->auth_hmacs)
		return -ENOMEM;

	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {

		/* See is we support the id.  Supported IDs have name and
		 * length fields set, so that we can allocated and use
		 * them.  We can safely just check for name, for without the
		 * name, we can't allocate the TFM.
		 */
		if (!sctp_hmac_list[id].hmac_name)
			continue;

		/* If this TFM has been allocated, we are all set */
		if (ep->auth_hmacs[id])
			continue;

		/* Allocate the ID */
Herbert Xu's avatar
Herbert Xu committed
485
		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486
487
488
489
490
491
492
493
494
		if (IS_ERR(tfm))
			goto out_err;

		ep->auth_hmacs[id] = tfm;
	}

	return 0;

out_err:
Coly Li's avatar
Coly Li committed
495
	/* Clean up any successful allocations */
496
497
498
499
500
	sctp_auth_destroy_hmacs(ep->auth_hmacs);
	return -ENOMEM;
}

/* Destroy the hmac tfm array */
Herbert Xu's avatar
Herbert Xu committed
501
void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502
503
504
505
506
507
{
	int i;

	if (!auth_hmacs)
		return;

508
	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
Herbert Xu's avatar
Herbert Xu committed
509
		crypto_free_shash(auth_hmacs[i]);
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
	}
	kfree(auth_hmacs);
}


struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
{
	return &sctp_hmac_list[hmac_id];
}

/* Get an hmac description information that we can use to build
 * the AUTH chunk
 */
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
{
	struct sctp_hmac_algo_param *hmacs;
	__u16 n_elt;
	__u16 id = 0;
	int i;

	/* If we have a default entry, use it */
	if (asoc->default_hmac_id)
		return &sctp_hmac_list[asoc->default_hmac_id];

	/* Since we do not have a default entry, find the first entry
	 * we support and return that.  Do not cache that id.
	 */
	hmacs = asoc->peer.peer_hmacs;
	if (!hmacs)
		return NULL;

	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
	for (i = 0; i < n_elt; i++) {
		id = ntohs(hmacs->hmac_ids[i]);

545
546
547
		/* Check the id is in the supported range. And
		 * see if we support the id.  Supported IDs have name and
		 * length fields set, so that we can allocate and use
548
549
550
		 * them.  We can safely just check for name, for without the
		 * name, we can't allocate the TFM.
		 */
551
552
		if (id > SCTP_AUTH_HMAC_ID_MAX ||
		    !sctp_hmac_list[id].hmac_name) {
553
			id = 0;
554
			continue;
555
		}
556
557
558
559
560
561
562
563
564
565

		break;
	}

	if (id == 0)
		return NULL;

	return &sctp_hmac_list[id];
}

566
static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
{
	int  found = 0;
	int  i;

	for (i = 0; i < n_elts; i++) {
		if (hmac_id == hmacs[i]) {
			found = 1;
			break;
		}
	}

	return found;
}

/* See if the HMAC_ID is one that we claim as supported */
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583
				    __be16 hmac_id)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
{
	struct sctp_hmac_algo_param *hmacs;
	__u16 n_elt;

	if (!asoc)
		return 0;

	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;

	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
}


/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 * Section 6.1:
 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 *   algorithm it supports.
 */
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
				     struct sctp_hmac_algo_param *hmacs)
{
	struct sctp_endpoint *ep;
	__u16   id;
	int	i;
	int	n_params;

	/* if the default id is already set, use it */
	if (asoc->default_hmac_id)
		return;

	n_params = (ntohs(hmacs->param_hdr.length)
				- sizeof(sctp_paramhdr_t)) >> 1;
	ep = asoc->ep;
	for (i = 0; i < n_params; i++) {
		id = ntohs(hmacs->hmac_ids[i]);

		/* Check the id is in the supported range */
		if (id > SCTP_AUTH_HMAC_ID_MAX)
			continue;

		/* If this TFM has been allocated, use this id */
		if (ep->auth_hmacs[id]) {
			asoc->default_hmac_id = id;
			break;
		}
	}
}


/* Check to see if the given chunk is supposed to be authenticated */
static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
{
	unsigned short len;
	int found = 0;
	int i;

641
	if (!param || param->param_hdr.length == 0)
642
643
644
645
646
647
648
649
650
651
652
653
		return 0;

	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);

	/* SCTP-AUTH, Section 3.2
	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
	 */
	for (i = 0; !found && i < len; i++) {
		switch (param->chunks[i]) {
654
655
656
657
		case SCTP_CID_INIT:
		case SCTP_CID_INIT_ACK:
		case SCTP_CID_SHUTDOWN_COMPLETE:
		case SCTP_CID_AUTH:
658
659
			break;

660
		default:
661
			if (param->chunks[i] == chunk)
662
				found = 1;
663
664
665
666
667
668
669
670
671
672
			break;
		}
	}

	return found;
}

/* Check if peer requested that this chunk is authenticated */
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
{
673
674
675
	if (!asoc)
		return 0;

676
	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
677
678
679
680
681
682
683
684
		return 0;

	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
}

/* Check if we requested that peer authenticate this chunk. */
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
{
685
686
687
	if (!asoc)
		return 0;

688
	if (!asoc->ep->auth_enable)
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
		return 0;

	return __sctp_auth_cid(chunk,
			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
}

/* SCTP-AUTH: Section 6.2:
 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 *    the hash function H as described by the MAC Identifier and the shared
 *    association key K based on the endpoint pair shared key described by
 *    the shared key identifier.  The 'data' used for the computation of
 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 *    zero (as shown in Figure 6) followed by all chunks that are placed
 *    after the AUTH chunk in the SCTP packet.
 */
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
			      struct sk_buff *skb,
			      struct sctp_auth_chunk *auth,
			      gfp_t gfp)
{
Herbert Xu's avatar
Herbert Xu committed
709
	struct crypto_shash *tfm;
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
	struct sctp_auth_bytes *asoc_key;
	__u16 key_id, hmac_id;
	__u8 *digest;
	unsigned char *end;
	int free_key = 0;

	/* Extract the info we need:
	 * - hmac id
	 * - key id
	 */
	key_id = ntohs(auth->auth_hdr.shkey_id);
	hmac_id = ntohs(auth->auth_hdr.hmac_id);

	if (key_id == asoc->active_key_id)
		asoc_key = asoc->asoc_shared_key;
	else {
		struct sctp_shared_key *ep_key;

		ep_key = sctp_auth_get_shkey(asoc, key_id);
		if (!ep_key)
			return;

		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
		if (!asoc_key)
			return;

		free_key = 1;
	}

	/* set up scatter list */
	end = skb_tail_pointer(skb);

Herbert Xu's avatar
Herbert Xu committed
742
	tfm = asoc->ep->auth_hmacs[hmac_id];
743
744

	digest = auth->auth_hdr.hmac;
Herbert Xu's avatar
Herbert Xu committed
745
	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
746
747
		goto free;

Herbert Xu's avatar
Herbert Xu committed
748
749
750
751
752
753
754
755
756
	{
		SHASH_DESC_ON_STACK(desc, tfm);

		desc->tfm = tfm;
		desc->flags = 0;
		crypto_shash_digest(desc, (u8 *)auth,
				    end - (unsigned char *)auth, digest);
		shash_desc_zero(desc);
	}
757
758
759
760
761

free:
	if (free_key)
		sctp_auth_key_put(asoc_key);
}
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

/* API Helpers */

/* Add a chunk to the endpoint authenticated chunk list */
int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
{
	struct sctp_chunks_param *p = ep->auth_chunk_list;
	__u16 nchunks;
	__u16 param_len;

	/* If this chunk is already specified, we are done */
	if (__sctp_auth_cid(chunk_id, p))
		return 0;

	/* Check if we can add this chunk to the array */
	param_len = ntohs(p->param_hdr.length);
	nchunks = param_len - sizeof(sctp_paramhdr_t);
	if (nchunks == SCTP_NUM_CHUNK_TYPES)
		return -EINVAL;

	p->chunks[nchunks] = chunk_id;
	p->param_hdr.length = htons(param_len + 1);
	return 0;
}

/* Add hmac identifires to the endpoint list of supported hmac ids */
int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
			   struct sctp_hmacalgo *hmacs)
{
	int has_sha1 = 0;
	__u16 id;
	int i;

	/* Scan the list looking for unsupported id.  Also make sure that
	 * SHA1 is specified.
	 */
	for (i = 0; i < hmacs->shmac_num_idents; i++) {
		id = hmacs->shmac_idents[i];

801
802
803
		if (id > SCTP_AUTH_HMAC_ID_MAX)
			return -EOPNOTSUPP;

804
805
806
807
808
809
810
811
812
813
		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
			has_sha1 = 1;

		if (!sctp_hmac_list[id].hmac_name)
			return -EOPNOTSUPP;
	}

	if (!has_sha1)
		return -EINVAL;

814
815
	for (i = 0; i < hmacs->shmac_num_idents; i++)
		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
				hmacs->shmac_num_idents * sizeof(__u16));
	return 0;
}

/* Set a new shared key on either endpoint or association.  If the
 * the key with a same ID already exists, replace the key (remove the
 * old key and add a new one).
 */
int sctp_auth_set_key(struct sctp_endpoint *ep,
		      struct sctp_association *asoc,
		      struct sctp_authkey *auth_key)
{
	struct sctp_shared_key *cur_key = NULL;
	struct sctp_auth_bytes *key;
	struct list_head *sh_keys;
	int replace = 0;

	/* Try to find the given key id to see if
	 * we are doing a replace, or adding a new key
	 */
	if (asoc)
		sh_keys = &asoc->endpoint_shared_keys;
	else
		sh_keys = &ep->endpoint_shared_keys;

	key_for_each(cur_key, sh_keys) {
		if (cur_key->key_id == auth_key->sca_keynumber) {
			replace = 1;
			break;
		}
	}

	/* If we are not replacing a key id, we need to allocate
	 * a shared key.
	 */
	if (!replace) {
		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
						 GFP_KERNEL);
		if (!cur_key)
			return -ENOMEM;
	}

	/* Create a new key data based on the info passed in */
860
	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
861
862
863
	if (!key)
		goto nomem;

864
	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

	/* If we are replacing, remove the old keys data from the
	 * key id.  If we are adding new key id, add it to the
	 * list.
	 */
	if (replace)
		sctp_auth_key_put(cur_key->key);
	else
		list_add(&cur_key->key_list, sh_keys);

	cur_key->key = key;
	return 0;
nomem:
	if (!replace)
		sctp_auth_shkey_free(cur_key);

	return -ENOMEM;
}

int sctp_auth_set_active_key(struct sctp_endpoint *ep,
			     struct sctp_association *asoc,
			     __u16  key_id)
{
	struct sctp_shared_key *key;
	struct list_head *sh_keys;
	int found = 0;

	/* The key identifier MUST correst to an existing key */
	if (asoc)
		sh_keys = &asoc->endpoint_shared_keys;
	else
		sh_keys = &ep->endpoint_shared_keys;

	key_for_each(key, sh_keys) {
		if (key->key_id == key_id) {
			found = 1;
			break;
		}
	}

	if (!found)
		return -EINVAL;

	if (asoc) {
		asoc->active_key_id = key_id;
		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
	} else
		ep->active_key_id = key_id;

	return 0;
}

int sctp_auth_del_key_id(struct sctp_endpoint *ep,
			 struct sctp_association *asoc,
			 __u16  key_id)
{
	struct sctp_shared_key *key;
	struct list_head *sh_keys;
	int found = 0;

	/* The key identifier MUST NOT be the current active key
	 * The key identifier MUST correst to an existing key
	 */
	if (asoc) {
		if (asoc->active_key_id == key_id)
			return -EINVAL;

		sh_keys = &asoc->endpoint_shared_keys;
	} else {
		if (ep->active_key_id == key_id)
			return -EINVAL;

		sh_keys = &ep->endpoint_shared_keys;
	}

	key_for_each(key, sh_keys) {
		if (key->key_id == key_id) {
			found = 1;
			break;
		}
	}

	if (!found)
		return -EINVAL;

	/* Delete the shared key */
	list_del_init(&key->key_list);
	sctp_auth_shkey_free(key);

	return 0;
}