dm-thin.c 107 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

207
struct pool_features {
208
209
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
210
211
212
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
213
	bool error_if_no_space:1;
214
215
};

216
217
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219
220
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

221
222
#define CELL_SORT_ARRAY_SIZE 8192

223
224
225
226
227
228
229
230
231
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
232
	uint32_t sectors_per_block;
233
	int sectors_per_block_shift;
234

235
	struct pool_features pf;
236
	bool low_water_triggered:1;	/* A dm event has been sent */
237
	bool suspended:1;
238
	bool out_of_data_space:1;
239

240
	struct dm_bio_prison *prison;
241
242
243
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
244
	struct throttle throttle;
245
	struct work_struct worker;
246
	struct delayed_work waker;
247
	struct delayed_work no_space_timeout;
248

249
	unsigned long last_commit_jiffies;
250
	unsigned ref_count;
251
252
253
254

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
255
	struct list_head prepared_discards;
256
	struct list_head active_thins;
257

258
259
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
260

Mike Snitzer's avatar
Mike Snitzer committed
261
	struct dm_thin_new_mapping *next_mapping;
262
	mempool_t *mapping_pool;
263
264
265
266

	process_bio_fn process_bio;
	process_bio_fn process_discard;

267
268
269
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

270
271
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
272

273
	struct dm_bio_prison_cell **cell_sort_array;
274
275
};

276
static enum pool_mode get_pool_mode(struct pool *pool);
277
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278

279
280
281
282
283
284
285
286
287
288
289
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
290
291
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292
293
294
295
296
297
};

/*
 * Target context for a thin.
 */
struct thin_c {
298
	struct list_head list;
299
	struct dm_dev *pool_dev;
300
	struct dm_dev *origin_dev;
301
	sector_t origin_size;
302
303
304
305
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
306
307
	struct mapped_device *thin_md;

308
	bool requeue_mode:1;
309
	spinlock_t lock;
310
	struct list_head deferred_cells;
311
312
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
313
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
314
315
316
317
318
319
320

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
321
322
323
324
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
325
326
327
328
329
330
331
332
333
334
335
336
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*----------------------------------------------------------------*/

struct discard_op {
	struct thin_c *tc;
	struct blk_plug plug;
	struct bio *parent_bio;
	struct bio *bio;
};

static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
{
	BUG_ON(!parent);

	op->tc = tc;
	blk_start_plug(&op->plug);
	op->parent_bio = parent;
	op->bio = NULL;
}

static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
Joe Thornber's avatar
Joe Thornber committed
357
{
358
	struct thin_c *tc = op->tc;
Joe Thornber's avatar
Joe Thornber committed
359
360
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
361

362
363
364
365
366
367
368
369
370
371
372
373
374
	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
				      GFP_NOWAIT, REQ_WRITE | REQ_DISCARD, &op->bio);
}

static void end_discard(struct discard_op *op, int r)
{
	if (op->bio) {
		/*
		 * Even if one of the calls to issue_discard failed, we
		 * need to wait for the chain to complete.
		 */
		bio_chain(op->bio, op->parent_bio);
		submit_bio(REQ_WRITE | REQ_DISCARD, op->bio);
375
	}
Joe Thornber's avatar
Joe Thornber committed
376

377
378
379
380
381
382
383
384
385
	blk_finish_plug(&op->plug);

	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
	if (r && !op->parent_bio->bi_error)
		op->parent_bio->bi_error = r;
	bio_endio(op->parent_bio);
Joe Thornber's avatar
Joe Thornber committed
386
387
388
389
}

/*----------------------------------------------------------------*/

390
391
392
393
394
395
396
397
398
399
400
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

432
433
434
435
436
437
438
439
440
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

441
442
443
444
445
446
447
448
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

449
450
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
451
{
452
	dm_cell_error(pool->prison, cell, error_code);
453
454
455
	dm_bio_prison_free_cell(pool->prison, cell);
}

456
457
458
459
460
static int get_pool_io_error_code(struct pool *pool)
{
	return pool->out_of_data_space ? -ENOSPC : -EIO;
}

461
462
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
463
464
465
	int error = get_pool_io_error_code(pool);

	cell_error_with_code(pool, cell, error);
466
467
}

468
469
470
471
472
473
474
475
476
477
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

478
479
/*----------------------------------------------------------------*/

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
540
struct dm_thin_endio_hook {
541
	struct thin_c *tc;
542
543
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
544
	struct dm_thin_new_mapping *overwrite_mapping;
545
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
546
	struct dm_bio_prison_cell *cell;
547
548
};

549
550
551
552
553
554
555
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
556
557
{
	struct bio *bio;
558

559
560
561
562
	while ((bio = bio_list_pop(bios))) {
		bio->bi_error = error;
		bio_endio(bio);
	}
563
564
565
566
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
567
	struct bio_list bios;
568
	unsigned long flags;
569
570

	bio_list_init(&bios);
571

572
	spin_lock_irqsave(&tc->lock, flags);
573
	__merge_bio_list(&bios, master);
574
	spin_unlock_irqrestore(&tc->lock, flags);
575

576
	error_bio_list(&bios, error);
577
578
}

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

596
597
static void requeue_io(struct thin_c *tc)
{
598
	struct bio_list bios;
599
	unsigned long flags;
600
601
602

	bio_list_init(&bios);

603
	spin_lock_irqsave(&tc->lock, flags);
604
605
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
606
	spin_unlock_irqrestore(&tc->lock, flags);
607

608
609
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
610
611
}

612
static void error_retry_list_with_code(struct pool *pool, int error)
613
614
615
616
617
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
618
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
619
620
621
	rcu_read_unlock();
}

622
623
static void error_retry_list(struct pool *pool)
{
624
625
	int error = get_pool_io_error_code(pool);

626
	error_retry_list_with_code(pool, error);
627
628
}

629
630
631
632
633
634
635
636
637
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
638
	struct pool *pool = tc->pool;
639
	sector_t block_nr = bio->bi_iter.bi_sector;
640

641
642
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
643
	else
644
		(void) sector_div(block_nr, pool->sectors_per_block);
645
646

	return block_nr;
647
648
}

Joe Thornber's avatar
Joe Thornber committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

677
678
679
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
680
	sector_t bi_sector = bio->bi_iter.bi_sector;
681
682

	bio->bi_bdev = tc->pool_dev->bdev;
683
	if (block_size_is_power_of_two(pool))
684
685
686
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
687
	else
688
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
689
				 sector_div(bi_sector, pool->sectors_per_block);
690
691
}

692
693
694
695
696
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

697
698
699
700
701
702
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

703
704
705
706
707
708
709
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

710
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
711
712
713
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

714
static void issue(struct thin_c *tc, struct bio *bio)
715
716
717
718
{
	struct pool *pool = tc->pool;
	unsigned long flags;

719
720
721
722
723
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

724
	/*
725
726
727
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
728
	 */
729
730
731
732
733
734
735
736
737
738
739
740
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
741
742
}

743
744
745
746
747
748
749
750
751
752
753
754
755
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

756
757
758
759
760
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
761
struct dm_thin_new_mapping {
762
763
	struct list_head list;

764
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
765
	bool maybe_shared:1;
766

767
768
769
770
771
772
773
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

774
	int err;
775
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
776
	dm_block_t virt_begin, virt_end;
777
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
778
	struct dm_bio_prison_cell *cell;
779
780
781
782
783
784
785
786
787
788
789

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

790
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
791
792
793
{
	struct pool *pool = m->tc->pool;

794
	if (atomic_dec_and_test(&m->prepare_actions)) {
795
		list_add_tail(&m->list, &pool->prepared_mappings);
796
797
798
799
		wake_worker(pool);
	}
}

800
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
801
802
803
804
805
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
806
	__complete_mapping_preparation(m);
807
808
809
	spin_unlock_irqrestore(&pool->lock, flags);
}

810
811
812
813
814
815
816
817
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

818
static void overwrite_endio(struct bio *bio)
819
{
820
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
821
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
822

823
824
	bio->bi_end_io = m->saved_bi_end_io;

825
	m->err = bio->bi_error;
826
	complete_mapping_preparation(m);
827
828
829
830
831
832
833
834
835
836
837
838
839
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
840
841
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
842
 */
843
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
844
845
846
847
{
	struct pool *pool = tc->pool;
	unsigned long flags;

848
849
850
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
851
852
853
854

	wake_worker(pool);
}

855
856
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

857
858
859
860
861
862
863
864
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
865
{
866
	struct remap_info *info = context;
867
868
	struct bio *bio;

869
	while ((bio = bio_list_pop(&cell->bios))) {
870
		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
871
			bio_list_add(&info->defer_bios, bio);
872
		else {
873
874
875
876
877
878
879
880
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
881
882
883
884
		}
	}
}

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

911
912
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
913
	cell_error(m->tc->pool, m->cell);
914
915
916
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
917

Mike Snitzer's avatar
Mike Snitzer committed
918
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
919
920
{
	struct thin_c *tc = m->tc;
921
	struct pool *pool = tc->pool;
922
	struct bio *bio = m->bio;
923
924
925
	int r;

	if (m->err) {
926
		cell_error(pool, m->cell);
927
		goto out;
928
929
930
931
932
933
934
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
935
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
936
	if (r) {
937
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
938
		cell_error(pool, m->cell);
939
		goto out;
940
941
942
943
944
945
946
947
948
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
949
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
950
		bio_endio(bio);
951
952
953
954
955
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
956

957
out:
958
	list_del(&m->list);
959
	mempool_free(m, pool->mapping_pool);
960
961
}

Joe Thornber's avatar
Joe Thornber committed
962
963
964
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
965
966
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
967
968
969
970
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
971

Joe Thornber's avatar
Joe Thornber committed
972
973
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
974
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
975
976
977
978
979
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
980
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
981
982
983
984
985
986
987
988
989
990
991
992
993
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
994
		bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
995

996
	cell_defer_no_holder(tc, m->cell);
997
998
999
	mempool_free(m, tc->pool->mapping_pool);
}

1000
1001
1002
/*----------------------------------------------------------------*/

static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1003
{
Joe Thornber's avatar
Joe Thornber committed
1004
1005
1006
1007
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
1008
	int r = 0;
Joe Thornber's avatar
Joe Thornber committed
1009
	bool used = true;
1010
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1011
1012
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1013
	struct discard_op op;
Joe Thornber's avatar
Joe Thornber committed
1014

1015
	begin_discard(&op, tc, m->bio);
Joe Thornber's avatar
Joe Thornber committed
1016
1017
1018
1019
1020
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
1021
				goto out;
1022

Joe Thornber's avatar
Joe Thornber committed
1023
1024
			if (!used)
				break;
1025
		}
Joe Thornber's avatar
Joe Thornber committed
1026

Joe Thornber's avatar
Joe Thornber committed
1027
1028
1029
1030
1031
1032
1033
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
1034
				goto out;
Joe Thornber's avatar
Joe Thornber committed
1035
1036
1037
1038
1039

			if (used)
				break;
		}

1040
		r = issue_discard(&op, b, e);
Joe Thornber's avatar
Joe Thornber committed
1041
		if (r)
1042
			goto out;
Joe Thornber's avatar
Joe Thornber committed
1043
1044
1045

		b = e;
	}
1046
1047
out:
	end_discard(&op, r);
Joe Thornber's avatar
Joe Thornber committed
1048
1049
}

Joe Thornber's avatar
Joe Thornber committed
1050
static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1051
1052
1053
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1054
	struct pool *pool = tc->pool;
1055

Joe Thornber's avatar
Joe Thornber committed
1056
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1057
	if (r) {
Joe Thornber's avatar
Joe Thornber committed
1058
		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1059
		bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
	} else if (m->maybe_shared) {
		passdown_double_checking_shared_status(m);

	} else {
		struct discard_op op;
		begin_discard(&op, tc, m->bio);
		r = issue_discard(&op, m->data_block,
				  m->data_block + (m->virt_end - m->virt_begin));
		end_discard(&op, r);
	}
1071

Joe Thornber's avatar
Joe Thornber committed
1072
1073
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1074
1075
}

Joe Thornber's avatar
Joe Thornber committed
1076
static void process_prepared(struct pool *pool, struct list_head *head,
1077
			     process_mapping_fn *fn)
1078
1079
1080
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1081
	struct dm_thin_new_mapping *m, *tmp;
1082
1083
1084

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1085
	list_splice_init(head, &maps);
1086
1087
1088
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1089
		(*fn)(m);
1090
1091
1092
1093
1094
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1095
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1096
{
1097
1098
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1099
1100
1101
1102
1103
1104
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1124
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1125
{
1126
	struct dm_thin_new_mapping *m = pool->next_mapping;
1127
1128
1129

	BUG_ON(!pool->next_mapping);

1130
1131
1132
1133
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1134
1135
	pool->next_mapping = NULL;

1136
	return m;
1137
1138
}

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1156
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1157
				      dm_block_t data_begin,
1158
1159
1160
1161
1162
1163
1164
1165
1166
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1167
	remap_and_issue(tc, bio, data_begin);
1168
1169
}

1170
1171
1172
/*
 * A partial copy also needs to zero the uncopied region.
 */
1173
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1174
1175
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1176
1177
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1178
1179
1180
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1181
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1182
1183

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1184
1185
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1186
1187
1188
	m->data_block = data_dest;
	m->cell = cell;

1189
1190
1191
1192
1193
1194
1195
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1196
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1197
		complete_mapping_preparation(m); /* already quiesced */
1198
1199
1200
1201
1202
1203
1204

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1205
1206
1207
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1208
1209
		struct dm_io_region from, to;

1210
		from.bdev = origin->bdev;
1211
		from.sector = data_origin * pool->sectors_per_block;
1212
		from.count = len;
1213
1214
1215

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1216
		to.count = len;
1217
1218
1219
1220

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
1221
			DMERR_LIMIT("dm_kcopyd_copy() failed");
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
			copy_complete(1, 1, m);

			/*
			 * We allow the zero to be issued, to simplify the
			 * error path.  Otherwise we'd need to start
			 * worrying about decrementing the prepare_actions
			 * counter.
			 */
		}

		/*
		 * Do we need to zero a tail region?
		 */
		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
			atomic_inc(&m->prepare_actions);
			ll_zero(tc, m,
				data_dest * pool->sectors_per_block + len,
				(data_dest + 1) * pool->sectors_per_block);
1240
1241
		}
	}
1242
1243

	complete_mapping_preparation(m); /* drop our ref */
1244
1245
}

1246
1247
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
1248
				   struct dm_bio_prison_cell *cell, struct bio *bio)
1249
1250
{
	schedule_copy(tc, virt_block, tc->pool_dev,
1251
1252
		      data_origin, data_dest, cell, bio,
		      tc->pool->sectors_per_block);
1253
1254
}

1255
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
1256
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1257
1258
1259
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1260
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1261

1262
	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1263
	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1264
1265
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1266
1267
1268
1269
1270
1271
1272
1273
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
1274
1275
1276
1277
1278
1279
1280
	if (pool->pf.zero_new_blocks) {
		if (io_overwrites_block(pool, bio))
			remap_and_issue_overwrite(tc, bio, data_block, m);
		else
			ll_zero(tc, m, data_block * pool->sectors_per_block,
				(data_block + 1) * pool->sectors_per_block);
	} else
1281
		process_prepared_mapping(m);
1282
}
1283