dev.c 25.4 KB
Newer Older
1
2
/*
  FUSE: Filesystem in Userspace
3
  Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

  This program can be distributed under the terms of the GNU GPL.
  See the file COPYING.
*/

#include "fuse_i.h"

#include <linux/init.h>
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/uio.h>
#include <linux/miscdevice.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/slab.h>

MODULE_ALIAS_MISCDEV(FUSE_MINOR);

22
static struct kmem_cache *fuse_req_cachep;
23

24
static struct fuse_conn *fuse_get_conn(struct file *file)
25
{
26
27
28
29
30
	/*
	 * Lockless access is OK, because file->private data is set
	 * once during mount and is valid until the file is released.
	 */
	return file->private_data;
31
32
}

33
static void fuse_request_init(struct fuse_req *req)
34
35
36
{
	memset(req, 0, sizeof(*req));
	INIT_LIST_HEAD(&req->list);
37
	INIT_LIST_HEAD(&req->intr_entry);
38
39
40
41
42
43
	init_waitqueue_head(&req->waitq);
	atomic_set(&req->count, 1);
}

struct fuse_req *fuse_request_alloc(void)
{
44
	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45
46
47
48
49
50
51
52
53
54
	if (req)
		fuse_request_init(req);
	return req;
}

void fuse_request_free(struct fuse_req *req)
{
	kmem_cache_free(fuse_req_cachep, req);
}

55
static void block_sigs(sigset_t *oldset)
56
57
58
59
60
61
62
{
	sigset_t mask;

	siginitsetinv(&mask, sigmask(SIGKILL));
	sigprocmask(SIG_BLOCK, &mask, oldset);
}

63
static void restore_sigs(sigset_t *oldset)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
{
	sigprocmask(SIG_SETMASK, oldset, NULL);
}

static void __fuse_get_request(struct fuse_req *req)
{
	atomic_inc(&req->count);
}

/* Must be called with > 1 refcount */
static void __fuse_put_request(struct fuse_req *req)
{
	BUG_ON(atomic_read(&req->count) < 2);
	atomic_dec(&req->count);
}

80
81
82
83
84
85
86
static void fuse_req_init_context(struct fuse_req *req)
{
	req->in.h.uid = current->fsuid;
	req->in.h.gid = current->fsgid;
	req->in.h.pid = current->pid;
}

87
struct fuse_req *fuse_get_req(struct fuse_conn *fc)
88
{
89
90
	struct fuse_req *req;
	sigset_t oldset;
91
	int intr;
92
93
	int err;

94
	atomic_inc(&fc->num_waiting);
95
	block_sigs(&oldset);
96
	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
97
	restore_sigs(&oldset);
98
99
100
	err = -EINTR;
	if (intr)
		goto out;
101

102
103
104
105
	err = -ENOTCONN;
	if (!fc->connected)
		goto out;

106
	req = fuse_request_alloc();
107
	err = -ENOMEM;
108
	if (!req)
109
		goto out;
110

111
	fuse_req_init_context(req);
112
	req->waiting = 1;
113
	return req;
114
115
116
117

 out:
	atomic_dec(&fc->num_waiting);
	return ERR_PTR(err);
118
119
}

120
121
122
123
124
125
126
127
128
129
130
131
/*
 * Return request in fuse_file->reserved_req.  However that may
 * currently be in use.  If that is the case, wait for it to become
 * available.
 */
static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
					 struct file *file)
{
	struct fuse_req *req = NULL;
	struct fuse_file *ff = file->private_data;

	do {
132
		wait_event(fc->reserved_req_waitq, ff->reserved_req);
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
		spin_lock(&fc->lock);
		if (ff->reserved_req) {
			req = ff->reserved_req;
			ff->reserved_req = NULL;
			get_file(file);
			req->stolen_file = file;
		}
		spin_unlock(&fc->lock);
	} while (!req);

	return req;
}

/*
 * Put stolen request back into fuse_file->reserved_req
 */
static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
{
	struct file *file = req->stolen_file;
	struct fuse_file *ff = file->private_data;

	spin_lock(&fc->lock);
	fuse_request_init(req);
	BUG_ON(ff->reserved_req);
	ff->reserved_req = req;
158
	wake_up_all(&fc->reserved_req_waitq);
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
	spin_unlock(&fc->lock);
	fput(file);
}

/*
 * Gets a requests for a file operation, always succeeds
 *
 * This is used for sending the FLUSH request, which must get to
 * userspace, due to POSIX locks which may need to be unlocked.
 *
 * If allocation fails due to OOM, use the reserved request in
 * fuse_file.
 *
 * This is very unlikely to deadlock accidentally, since the
 * filesystem should not have it's own file open.  If deadlock is
 * intentional, it can still be broken by "aborting" the filesystem.
 */
struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
{
	struct fuse_req *req;

	atomic_inc(&fc->num_waiting);
	wait_event(fc->blocked_waitq, !fc->blocked);
	req = fuse_request_alloc();
	if (!req)
		req = get_reserved_req(fc, file);

	fuse_req_init_context(req);
	req->waiting = 1;
	return req;
}

191
void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
192
193
{
	if (atomic_dec_and_test(&req->count)) {
194
195
		if (req->waiting)
			atomic_dec(&fc->num_waiting);
196
197
198
199
200

		if (req->stolen_file)
			put_reserved_req(fc, req);
		else
			fuse_request_free(req);
201
202
203
	}
}

204
205
/*
 * This function is called when a request is finished.  Either a reply
206
 * has arrived or it was aborted (and not yet sent) or some error
207
 * occurred during communication with userspace, or the device file
208
209
210
 * was closed.  The requester thread is woken up (if still waiting),
 * the 'end' callback is called if given, else the reference to the
 * request is released
211
 *
212
 * Called with fc->lock, unlocks it
213
214
 */
static void request_end(struct fuse_conn *fc, struct fuse_req *req)
215
	__releases(fc->lock)
216
{
217
218
	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
	req->end = NULL;
219
	list_del(&req->list);
220
	list_del(&req->intr_entry);
221
	req->state = FUSE_REQ_FINISHED;
222
223
224
225
226
	if (req->background) {
		if (fc->num_background == FUSE_MAX_BACKGROUND) {
			fc->blocked = 0;
			wake_up_all(&fc->blocked_waitq);
		}
227
228
229
230
		if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
			clear_bdi_congested(&fc->bdi, READ);
			clear_bdi_congested(&fc->bdi, WRITE);
		}
231
		fc->num_background--;
232
	}
233
234
235
236
237
238
239
240
	spin_unlock(&fc->lock);
	dput(req->dentry);
	mntput(req->vfsmount);
	wake_up(&req->waitq);
	if (end)
		end(fc, req);
	else
		fuse_put_request(fc, req);
241
242
}

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
static void wait_answer_interruptible(struct fuse_conn *fc,
				      struct fuse_req *req)
{
	if (signal_pending(current))
		return;

	spin_unlock(&fc->lock);
	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
	spin_lock(&fc->lock);
}

static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
{
	list_add_tail(&req->intr_entry, &fc->interrupts);
	wake_up(&fc->waitq);
	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
}

261
/* Called with fc->lock held.  Releases, and then reacquires it. */
262
static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
263
{
264
265
266
	if (!fc->no_interrupt) {
		/* Any signal may interrupt this */
		wait_answer_interruptible(fc, req);
267

268
269
270
271
272
273
274
275
276
277
278
279
		if (req->aborted)
			goto aborted;
		if (req->state == FUSE_REQ_FINISHED)
			return;

		req->interrupted = 1;
		if (req->state == FUSE_REQ_SENT)
			queue_interrupt(fc, req);
	}

	if (req->force) {
		spin_unlock(&fc->lock);
280
		wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
281
282
283
284
285
		spin_lock(&fc->lock);
	} else {
		sigset_t oldset;

		/* Only fatal signals may interrupt this */
286
		block_sigs(&oldset);
287
		wait_answer_interruptible(fc, req);
288
289
		restore_sigs(&oldset);
	}
290

291
292
293
294
295
296
297
298
299
	if (req->aborted)
		goto aborted;
	if (req->state == FUSE_REQ_FINISHED)
 		return;

	req->out.h.error = -EINTR;
	req->aborted = 1;

 aborted:
300
301
302
303
304
305
	if (req->locked) {
		/* This is uninterruptible sleep, because data is
		   being copied to/from the buffers of req.  During
		   locked state, there mustn't be any filesystem
		   operation (e.g. page fault), since that could lead
		   to deadlock */
306
		spin_unlock(&fc->lock);
307
		wait_event(req->waitq, !req->locked);
308
		spin_lock(&fc->lock);
309
	}
310
	if (req->state == FUSE_REQ_PENDING) {
311
312
		list_del(&req->list);
		__fuse_put_request(req);
313
314
315
316
317
	} else if (req->state == FUSE_REQ_SENT) {
		spin_unlock(&fc->lock);
		wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
		spin_lock(&fc->lock);
	}
318
319
320
321
322
323
324
325
326
327
328
329
330
}

static unsigned len_args(unsigned numargs, struct fuse_arg *args)
{
	unsigned nbytes = 0;
	unsigned i;

	for (i = 0; i < numargs; i++)
		nbytes += args[i].size;

	return nbytes;
}

331
332
333
334
335
336
337
338
339
340
static u64 fuse_get_unique(struct fuse_conn *fc)
 {
 	fc->reqctr++;
 	/* zero is special */
 	if (fc->reqctr == 0)
 		fc->reqctr = 1;

	return fc->reqctr;
}

341
342
static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
{
343
	req->in.h.unique = fuse_get_unique(fc);
344
345
346
	req->in.h.len = sizeof(struct fuse_in_header) +
		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
	list_add_tail(&req->list, &fc->pending);
347
	req->state = FUSE_REQ_PENDING;
348
349
350
351
	if (!req->waiting) {
		req->waiting = 1;
		atomic_inc(&fc->num_waiting);
	}
352
	wake_up(&fc->waitq);
353
	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
354
355
}

356
void request_send(struct fuse_conn *fc, struct fuse_req *req)
357
358
{
	req->isreply = 1;
359
	spin_lock(&fc->lock);
Miklos Szeredi's avatar
Miklos Szeredi committed
360
	if (!fc->connected)
361
362
363
364
365
366
367
368
369
		req->out.h.error = -ENOTCONN;
	else if (fc->conn_error)
		req->out.h.error = -ECONNREFUSED;
	else {
		queue_request(fc, req);
		/* acquire extra reference, since request is still needed
		   after request_end() */
		__fuse_get_request(req);

370
		request_wait_answer(fc, req);
371
	}
372
	spin_unlock(&fc->lock);
373
374
375
376
}

static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
{
377
	spin_lock(&fc->lock);
Miklos Szeredi's avatar
Miklos Szeredi committed
378
	if (fc->connected) {
379
380
381
382
		req->background = 1;
		fc->num_background++;
		if (fc->num_background == FUSE_MAX_BACKGROUND)
			fc->blocked = 1;
383
384
385
386
		if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
			set_bdi_congested(&fc->bdi, READ);
			set_bdi_congested(&fc->bdi, WRITE);
		}
387

388
		queue_request(fc, req);
389
		spin_unlock(&fc->lock);
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
	} else {
		req->out.h.error = -ENOTCONN;
		request_end(fc, req);
	}
}

void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
{
	req->isreply = 0;
	request_send_nowait(fc, req);
}

void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
{
	req->isreply = 1;
	request_send_nowait(fc, req);
}

/*
 * Lock the request.  Up to the next unlock_request() there mustn't be
 * anything that could cause a page-fault.  If the request was already
411
 * aborted bail out.
412
 */
413
static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
414
415
416
{
	int err = 0;
	if (req) {
417
		spin_lock(&fc->lock);
418
		if (req->aborted)
419
420
421
			err = -ENOENT;
		else
			req->locked = 1;
422
		spin_unlock(&fc->lock);
423
424
425
426
427
	}
	return err;
}

/*
428
 * Unlock request.  If it was aborted during being locked, the
429
430
431
 * requester thread is currently waiting for it to be unlocked, so
 * wake it up.
 */
432
static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
433
434
{
	if (req) {
435
		spin_lock(&fc->lock);
436
		req->locked = 0;
437
		if (req->aborted)
438
			wake_up(&req->waitq);
439
		spin_unlock(&fc->lock);
440
441
442
443
	}
}

struct fuse_copy_state {
444
	struct fuse_conn *fc;
445
446
447
448
449
450
451
452
453
454
455
456
	int write;
	struct fuse_req *req;
	const struct iovec *iov;
	unsigned long nr_segs;
	unsigned long seglen;
	unsigned long addr;
	struct page *pg;
	void *mapaddr;
	void *buf;
	unsigned len;
};

457
458
459
static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
			   int write, struct fuse_req *req,
			   const struct iovec *iov, unsigned long nr_segs)
460
461
{
	memset(cs, 0, sizeof(*cs));
462
	cs->fc = fc;
463
464
465
466
467
468
469
	cs->write = write;
	cs->req = req;
	cs->iov = iov;
	cs->nr_segs = nr_segs;
}

/* Unmap and put previous page of userspace buffer */
470
static void fuse_copy_finish(struct fuse_copy_state *cs)
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
{
	if (cs->mapaddr) {
		kunmap_atomic(cs->mapaddr, KM_USER0);
		if (cs->write) {
			flush_dcache_page(cs->pg);
			set_page_dirty_lock(cs->pg);
		}
		put_page(cs->pg);
		cs->mapaddr = NULL;
	}
}

/*
 * Get another pagefull of userspace buffer, and map it to kernel
 * address space, and lock request
 */
static int fuse_copy_fill(struct fuse_copy_state *cs)
{
	unsigned long offset;
	int err;

492
	unlock_request(cs->fc, cs->req);
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
	fuse_copy_finish(cs);
	if (!cs->seglen) {
		BUG_ON(!cs->nr_segs);
		cs->seglen = cs->iov[0].iov_len;
		cs->addr = (unsigned long) cs->iov[0].iov_base;
		cs->iov ++;
		cs->nr_segs --;
	}
	down_read(&current->mm->mmap_sem);
	err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
			     &cs->pg, NULL);
	up_read(&current->mm->mmap_sem);
	if (err < 0)
		return err;
	BUG_ON(err != 1);
	offset = cs->addr % PAGE_SIZE;
	cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
	cs->buf = cs->mapaddr + offset;
	cs->len = min(PAGE_SIZE - offset, cs->seglen);
	cs->seglen -= cs->len;
	cs->addr += cs->len;

515
	return lock_request(cs->fc, cs->req);
516
517
518
}

/* Do as much copy to/from userspace buffer as we can */
519
static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
{
	unsigned ncpy = min(*size, cs->len);
	if (val) {
		if (cs->write)
			memcpy(cs->buf, *val, ncpy);
		else
			memcpy(*val, cs->buf, ncpy);
		*val += ncpy;
	}
	*size -= ncpy;
	cs->len -= ncpy;
	cs->buf += ncpy;
	return ncpy;
}

/*
 * Copy a page in the request to/from the userspace buffer.  Must be
 * done atomically
 */
539
540
static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
			  unsigned offset, unsigned count, int zeroing)
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
{
	if (page && zeroing && count < PAGE_SIZE) {
		void *mapaddr = kmap_atomic(page, KM_USER1);
		memset(mapaddr, 0, PAGE_SIZE);
		kunmap_atomic(mapaddr, KM_USER1);
	}
	while (count) {
		int err;
		if (!cs->len && (err = fuse_copy_fill(cs)))
			return err;
		if (page) {
			void *mapaddr = kmap_atomic(page, KM_USER1);
			void *buf = mapaddr + offset;
			offset += fuse_copy_do(cs, &buf, &count);
			kunmap_atomic(mapaddr, KM_USER1);
		} else
			offset += fuse_copy_do(cs, NULL, &count);
	}
	if (page && !cs->write)
		flush_dcache_page(page);
	return 0;
}

/* Copy pages in the request to/from userspace buffer */
static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
			   int zeroing)
{
	unsigned i;
	struct fuse_req *req = cs->req;
	unsigned offset = req->page_offset;
	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);

	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
		struct page *page = req->pages[i];
		int err = fuse_copy_page(cs, page, offset, count, zeroing);
		if (err)
			return err;

		nbytes -= count;
		count = min(nbytes, (unsigned) PAGE_SIZE);
		offset = 0;
	}
	return 0;
}

/* Copy a single argument in the request to/from userspace buffer */
static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
{
	while (size) {
		int err;
		if (!cs->len && (err = fuse_copy_fill(cs)))
			return err;
		fuse_copy_do(cs, &val, &size);
	}
	return 0;
}

/* Copy request arguments to/from userspace buffer */
static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
			  unsigned argpages, struct fuse_arg *args,
			  int zeroing)
{
	int err = 0;
	unsigned i;

	for (i = 0; !err && i < numargs; i++)  {
		struct fuse_arg *arg = &args[i];
		if (i == numargs - 1 && argpages)
			err = fuse_copy_pages(cs, arg->size, zeroing);
		else
			err = fuse_copy_one(cs, arg->value, arg->size);
	}
	return err;
}

616
617
618
619
620
static int request_pending(struct fuse_conn *fc)
{
	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
}

621
622
623
624
625
626
/* Wait until a request is available on the pending list */
static void request_wait(struct fuse_conn *fc)
{
	DECLARE_WAITQUEUE(wait, current);

	add_wait_queue_exclusive(&fc->waitq, &wait);
627
	while (fc->connected && !request_pending(fc)) {
628
629
630
631
		set_current_state(TASK_INTERRUPTIBLE);
		if (signal_pending(current))
			break;

632
		spin_unlock(&fc->lock);
633
		schedule();
634
		spin_lock(&fc->lock);
635
636
637
638
639
	}
	set_current_state(TASK_RUNNING);
	remove_wait_queue(&fc->waitq, &wait);
}

640
641
642
643
644
645
646
647
648
649
/*
 * Transfer an interrupt request to userspace
 *
 * Unlike other requests this is assembled on demand, without a need
 * to allocate a separate fuse_req structure.
 *
 * Called with fc->lock held, releases it
 */
static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
			       const struct iovec *iov, unsigned long nr_segs)
650
	__releases(fc->lock)
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
{
	struct fuse_copy_state cs;
	struct fuse_in_header ih;
	struct fuse_interrupt_in arg;
	unsigned reqsize = sizeof(ih) + sizeof(arg);
	int err;

	list_del_init(&req->intr_entry);
	req->intr_unique = fuse_get_unique(fc);
	memset(&ih, 0, sizeof(ih));
	memset(&arg, 0, sizeof(arg));
	ih.len = reqsize;
	ih.opcode = FUSE_INTERRUPT;
	ih.unique = req->intr_unique;
	arg.unique = req->in.h.unique;

	spin_unlock(&fc->lock);
	if (iov_length(iov, nr_segs) < reqsize)
		return -EINVAL;

	fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
	err = fuse_copy_one(&cs, &ih, sizeof(ih));
	if (!err)
		err = fuse_copy_one(&cs, &arg, sizeof(arg));
	fuse_copy_finish(&cs);

	return err ? err : reqsize;
}

680
681
682
683
/*
 * Read a single request into the userspace filesystem's buffer.  This
 * function waits until a request is available, then removes it from
 * the pending list and copies request data to userspace buffer.  If
684
685
 * no reply is needed (FORGET) or request has been aborted or there
 * was an error during the copying then it's finished by calling
686
687
688
 * request_end().  Otherwise add it to the processing list, and set
 * the 'sent' flag.
 */
689
690
static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
			      unsigned long nr_segs, loff_t pos)
691
692
693
694
695
696
{
	int err;
	struct fuse_req *req;
	struct fuse_in *in;
	struct fuse_copy_state cs;
	unsigned reqsize;
697
	struct file *file = iocb->ki_filp;
698
699
700
	struct fuse_conn *fc = fuse_get_conn(file);
	if (!fc)
		return -EPERM;
701

702
 restart:
703
	spin_lock(&fc->lock);
704
705
	err = -EAGAIN;
	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
706
	    !request_pending(fc))
707
708
		goto err_unlock;

709
710
	request_wait(fc);
	err = -ENODEV;
711
	if (!fc->connected)
712
713
		goto err_unlock;
	err = -ERESTARTSYS;
714
	if (!request_pending(fc))
715
716
		goto err_unlock;

717
718
719
720
721
722
	if (!list_empty(&fc->interrupts)) {
		req = list_entry(fc->interrupts.next, struct fuse_req,
				 intr_entry);
		return fuse_read_interrupt(fc, req, iov, nr_segs);
	}

723
	req = list_entry(fc->pending.next, struct fuse_req, list);
724
	req->state = FUSE_REQ_READING;
725
	list_move(&req->list, &fc->io);
726
727

	in = &req->in;
728
729
730
731
732
733
734
735
736
	reqsize = in->h.len;
	/* If request is too large, reply with an error and restart the read */
	if (iov_length(iov, nr_segs) < reqsize) {
		req->out.h.error = -EIO;
		/* SETXATTR is special, since it may contain too large data */
		if (in->h.opcode == FUSE_SETXATTR)
			req->out.h.error = -E2BIG;
		request_end(fc, req);
		goto restart;
737
	}
738
739
	spin_unlock(&fc->lock);
	fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
740
741
742
743
	err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
	if (!err)
		err = fuse_copy_args(&cs, in->numargs, in->argpages,
				     (struct fuse_arg *) in->args, 0);
744
	fuse_copy_finish(&cs);
745
	spin_lock(&fc->lock);
746
	req->locked = 0;
747
	if (!err && req->aborted)
748
749
		err = -ENOENT;
	if (err) {
750
		if (!req->aborted)
751
752
753
754
755
756
757
			req->out.h.error = -EIO;
		request_end(fc, req);
		return err;
	}
	if (!req->isreply)
		request_end(fc, req);
	else {
758
		req->state = FUSE_REQ_SENT;
759
		list_move_tail(&req->list, &fc->processing);
760
761
		if (req->interrupted)
			queue_interrupt(fc, req);
762
		spin_unlock(&fc->lock);
763
764
765
766
	}
	return reqsize;

 err_unlock:
767
	spin_unlock(&fc->lock);
768
769
770
771
772
773
774
775
776
777
778
	return err;
}

/* Look up request on processing list by unique ID */
static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
{
	struct list_head *entry;

	list_for_each(entry, &fc->processing) {
		struct fuse_req *req;
		req = list_entry(entry, struct fuse_req, list);
779
		if (req->in.h.unique == unique || req->intr_unique == unique)
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
			return req;
	}
	return NULL;
}

static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
			 unsigned nbytes)
{
	unsigned reqsize = sizeof(struct fuse_out_header);

	if (out->h.error)
		return nbytes != reqsize ? -EINVAL : 0;

	reqsize += len_args(out->numargs, out->args);

	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
		return -EINVAL;
	else if (reqsize > nbytes) {
		struct fuse_arg *lastarg = &out->args[out->numargs-1];
		unsigned diffsize = reqsize - nbytes;
		if (diffsize > lastarg->size)
			return -EINVAL;
		lastarg->size -= diffsize;
	}
	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
			      out->page_zeroing);
}

/*
 * Write a single reply to a request.  First the header is copied from
 * the write buffer.  The request is then searched on the processing
 * list by the unique ID found in the header.  If found, then remove
 * it from the list and copy the rest of the buffer to the request.
 * The request is finished by calling request_end()
 */
815
816
static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
			       unsigned long nr_segs, loff_t pos)
817
818
819
820
821
822
{
	int err;
	unsigned nbytes = iov_length(iov, nr_segs);
	struct fuse_req *req;
	struct fuse_out_header oh;
	struct fuse_copy_state cs;
823
	struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
824
	if (!fc)
825
		return -EPERM;
826

827
	fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
828
829
830
831
832
833
834
835
836
837
838
	if (nbytes < sizeof(struct fuse_out_header))
		return -EINVAL;

	err = fuse_copy_one(&cs, &oh, sizeof(oh));
	if (err)
		goto err_finish;
	err = -EINVAL;
	if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
	    oh.len != nbytes)
		goto err_finish;

839
	spin_lock(&fc->lock);
840
841
842
843
	err = -ENOENT;
	if (!fc->connected)
		goto err_unlock;

844
845
846
847
	req = request_find(fc, oh.unique);
	if (!req)
		goto err_unlock;

848
	if (req->aborted) {
849
		spin_unlock(&fc->lock);
850
		fuse_copy_finish(&cs);
851
		spin_lock(&fc->lock);
852
		request_end(fc, req);
853
854
		return -ENOENT;
	}
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
	/* Is it an interrupt reply? */
	if (req->intr_unique == oh.unique) {
		err = -EINVAL;
		if (nbytes != sizeof(struct fuse_out_header))
			goto err_unlock;

		if (oh.error == -ENOSYS)
			fc->no_interrupt = 1;
		else if (oh.error == -EAGAIN)
			queue_interrupt(fc, req);

		spin_unlock(&fc->lock);
		fuse_copy_finish(&cs);
		return nbytes;
	}

	req->state = FUSE_REQ_WRITING;
872
	list_move(&req->list, &fc->io);
873
874
875
	req->out.h = oh;
	req->locked = 1;
	cs.req = req;
876
	spin_unlock(&fc->lock);
877
878
879
880

	err = copy_out_args(&cs, &req->out, nbytes);
	fuse_copy_finish(&cs);

881
	spin_lock(&fc->lock);
882
883
	req->locked = 0;
	if (!err) {
884
		if (req->aborted)
885
			err = -ENOENT;
886
	} else if (!req->aborted)
887
888
889
890
891
892
		req->out.h.error = -EIO;
	request_end(fc, req);

	return err ? err : nbytes;

 err_unlock:
893
	spin_unlock(&fc->lock);
894
895
896
897
898
899
900
901
 err_finish:
	fuse_copy_finish(&cs);
	return err;
}

static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
{
	unsigned mask = POLLOUT | POLLWRNORM;
902
	struct fuse_conn *fc = fuse_get_conn(file);
903
	if (!fc)
904
		return POLLERR;
905
906
907

	poll_wait(file, &fc->waitq, wait);

908
	spin_lock(&fc->lock);
909
910
	if (!fc->connected)
		mask = POLLERR;
911
	else if (request_pending(fc))
912
		mask |= POLLIN | POLLRDNORM;
913
	spin_unlock(&fc->lock);
914
915
916
917

	return mask;
}

918
919
920
/*
 * Abort all requests on the given list (pending or processing)
 *
921
 * This function releases and reacquires fc->lock
922
 */
923
924
925
926
927
928
929
static void end_requests(struct fuse_conn *fc, struct list_head *head)
{
	while (!list_empty(head)) {
		struct fuse_req *req;
		req = list_entry(head->next, struct fuse_req, list);
		req->out.h.error = -ECONNABORTED;
		request_end(fc, req);
930
		spin_lock(&fc->lock);
931
932
933
	}
}

934
935
936
/*
 * Abort requests under I/O
 *
937
 * The requests are set to aborted and finished, and the request
938
939
 * waiter is woken up.  This will make request_wait_answer() wait
 * until the request is unlocked and then return.
940
941
942
943
 *
 * If the request is asynchronous, then the end function needs to be
 * called after waiting for the request to be unlocked (if it was
 * locked).
944
945
946
947
 */
static void end_io_requests(struct fuse_conn *fc)
{
	while (!list_empty(&fc->io)) {
948
949
950
951
		struct fuse_req *req =
			list_entry(fc->io.next, struct fuse_req, list);
		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;

952
		req->aborted = 1;
953
954
955
956
		req->out.h.error = -ECONNABORTED;
		req->state = FUSE_REQ_FINISHED;
		list_del_init(&req->list);
		wake_up(&req->waitq);
957
958
959
960
		if (end) {
			req->end = NULL;
			/* The end function will consume this reference */
			__fuse_get_request(req);
961
			spin_unlock(&fc->lock);
962
963
			wait_event(req->waitq, !req->locked);
			end(fc, req);
964
			spin_lock(&fc->lock);
965
		}
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
	}
}

/*
 * Abort all requests.
 *
 * Emergency exit in case of a malicious or accidental deadlock, or
 * just a hung filesystem.
 *
 * The same effect is usually achievable through killing the
 * filesystem daemon and all users of the filesystem.  The exception
 * is the combination of an asynchronous request and the tricky
 * deadlock (see Documentation/filesystems/fuse.txt).
 *
 * During the aborting, progression of requests from the pending and
 * processing lists onto the io list, and progression of new requests
 * onto the pending list is prevented by req->connected being false.
 *
 * Progression of requests under I/O to the processing list is
985
986
 * prevented by the req->aborted flag being true for these requests.
 * For this reason requests on the io list must be aborted first.
987
988
989
 */
void fuse_abort_conn(struct fuse_conn *fc)
{
990
	spin_lock(&fc->lock);
991
992
	if (fc->connected) {
		fc->connected = 0;
993
		fc->blocked = 0;
994
995
996
997
		end_io_requests(fc);
		end_requests(fc, &fc->pending);
		end_requests(fc, &fc->processing);
		wake_up_all(&fc->waitq);
998
		wake_up_all(&fc->blocked_waitq);
999
		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1000
	}
1001
	spin_unlock(&fc->lock);
1002
1003
}

1004
1005
static int fuse_dev_release(struct inode *inode, struct file *file)
{
1006
	struct fuse_conn *fc = fuse_get_conn(file);
1007
	if (fc) {
1008
		spin_lock(&fc->lock);
Miklos Szeredi's avatar
Miklos Szeredi committed
1009
		fc->connected = 0;
1010
1011
		end_requests(fc, &fc->pending);
		end_requests(fc, &fc->processing);
1012
		spin_unlock(&fc->lock);
1013
		fasync_helper(-1, file, 0, &fc->fasync);
1014
		fuse_conn_put(fc);
1015
	}
1016

1017
1018
1019
	return 0;
}

1020
1021
1022
1023
static int fuse_dev_fasync(int fd, struct file *file, int on)
{
	struct fuse_conn *fc = fuse_get_conn(file);
	if (!fc)
1024
		return -EPERM;
1025
1026
1027
1028
1029

	/* No locking - fasync_helper does its own locking */
	return fasync_helper(fd, file, on, &fc->fasync);
}

1030
const struct file_operations fuse_dev_operations = {
1031
1032
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
1033
1034
1035
1036
	.read		= do_sync_read,
	.aio_read	= fuse_dev_read,
	.write		= do_sync_write,
	.aio_write	= fuse_dev_write,
1037
1038
	.poll		= fuse_dev_poll,
	.release	= fuse_dev_release,
1039
	.fasync		= fuse_dev_fasync,
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
};

static struct miscdevice fuse_miscdevice = {
	.minor = FUSE_MINOR,
	.name  = "fuse",
	.fops = &fuse_dev_operations,
};

int __init fuse_dev_init(void)
{
	int err = -ENOMEM;
	fuse_req_cachep = kmem_cache_create("fuse_request",
					    sizeof(struct fuse_req),
1053
					    0, 0, NULL);
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
	if (!fuse_req_cachep)
		goto out;

	err = misc_register(&fuse_miscdevice);
	if (err)
		goto out_cache_clean;

	return 0;

 out_cache_clean:
	kmem_cache_destroy(fuse_req_cachep);
 out:
	return err;
}

void fuse_dev_cleanup(void)
{
	misc_deregister(&fuse_miscdevice);
	kmem_cache_destroy(fuse_req_cachep);
}