rtd520.c 44.2 KB
Newer Older
1
/*
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 * comedi/drivers/rtd520.c
 * Comedi driver for Real Time Devices (RTD) PCI4520/DM7520
 *
 * COMEDI - Linux Control and Measurement Device Interface
 * Copyright (C) 2001 David A. Schleef <ds@schleef.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
22
23

/*
24
25
26
27
28
29
30
31
32
33
34
 * Driver: rtd520
 * Description: Real Time Devices PCI4520/DM7520
 * Devices: (Real Time Devices) DM7520HR-1 [DM7520]
 *	    (Real Time Devices) DM7520HR-8 [DM7520]
 *	    (Real Time Devices) PCI4520 [PCI4520]
 *	    (Real Time Devices) PCI4520-8 [PCI4520]
 * Author: Dan Christian
 * Status: Works. Only tested on DM7520-8. Not SMP safe.
 *
 * Configuration options: not applicable, uses PCI auto config
 */
35
36

/*
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
 * Created by Dan Christian, NASA Ames Research Center.
 *
 * The PCI4520 is a PCI card. The DM7520 is a PC/104-plus card.
 * Both have:
 *   8/16 12 bit ADC with FIFO and channel gain table
 *   8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
 *   8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
 *   2 12 bit DACs with FIFOs
 *   2 bits output
 *   2 bits input
 *   bus mastering DMA
 *   timers: ADC sample, pacer, burst, about, delay, DA1, DA2
 *   sample counter
 *   3 user timer/counters (8254)
 *   external interrupt
 *
 * The DM7520 has slightly fewer features (fewer gain steps).
 *
 * These boards can support external multiplexors and multi-board
 * synchronization, but this driver doesn't support that.
 *
 * Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
 * Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
 * Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
 * Call them and ask for the register level manual.
 * PCI chip: http://www.plxtech.com/products/io/pci9080
 *
 * Notes:
 * This board is memory mapped. There is some IO stuff, but it isn't needed.
 *
 * I use a pretty loose naming style within the driver (rtd_blah).
 * All externally visible names should be rtd520_blah.
 * I use camelCase for structures (and inside them).
 * I may also use upper CamelCase for function names (old habit).
 *
 * This board is somewhat related to the RTD PCI4400 board.
 *
 * I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
 * das1800, since they have the best documented code. Driver cb_pcidas64.c
 * uses the same DMA controller.
 *
 * As far as I can tell, the About interrupt doesn't work if Sample is
 * also enabled. It turns out that About really isn't needed, since
 * we always count down samples read.
 *
 * There was some timer/counter code, but it didn't follow the right API.
 */
84
85

/*
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
 * driver status:
 *
 * Analog-In supports instruction and command mode.
 *
 * With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
 * (single channel, 64K read buffer). I get random system lockups when
 * using DMA with ALI-15xx based systems. I haven't been able to test
 * any other chipsets. The lockups happen soon after the start of an
 * acquistion, not in the middle of a long run.
 *
 * Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
 * (with a 256K read buffer).
 *
 * Digital-IO and Analog-Out only support instruction mode.
 */
101

102
#include <linux/pci.h>
103
#include <linux/delay.h>
104
#include <linux/interrupt.h>
105
106
107

#include "../comedidev.h"

108
#include "comedi_fc.h"
109
#include "plx9080.h"
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
 * Local Address Space 0 Offsets
 */
#define LAS0_USER_IO		0x0008	/* User I/O */
#define LAS0_ADC		0x0010	/* FIFO Status/Software A/D Start */
#define FS_DAC1_NOT_EMPTY	(1 << 0)	/* DAC1 FIFO not empty */
#define FS_DAC1_HEMPTY		(1 << 1)	/* DAC1 FIFO half empty */
#define FS_DAC1_NOT_FULL	(1 << 2)	/* DAC1 FIFO not full */
#define FS_DAC2_NOT_EMPTY	(1 << 4)	/* DAC2 FIFO not empty */
#define FS_DAC2_HEMPTY		(1 << 5)	/* DAC2 FIFO half empty */
#define FS_DAC2_NOT_FULL	(1 << 6)	/* DAC2 FIFO not full */
#define FS_ADC_NOT_EMPTY	(1 << 8)	/* ADC FIFO not empty */
#define FS_ADC_HEMPTY		(1 << 9)	/* ADC FIFO half empty */
#define FS_ADC_NOT_FULL		(1 << 10)	/* ADC FIFO not full */
#define FS_DIN_NOT_EMPTY	(1 << 12)	/* DIN FIFO not empty */
#define FS_DIN_HEMPTY		(1 << 13)	/* DIN FIFO half empty */
#define FS_DIN_NOT_FULL		(1 << 14)	/* DIN FIFO not full */
#define LAS0_DAC1		0x0014	/* Software D/A1 Update (w) */
#define LAS0_DAC2		0x0018	/* Software D/A2 Update (w) */
#define LAS0_DAC		0x0024	/* Software Simultaneous Update (w) */
#define LAS0_PACER		0x0028	/* Software Pacer Start/Stop */
#define LAS0_TIMER		0x002c	/* Timer Status/HDIN Software Trig. */
#define LAS0_IT			0x0030	/* Interrupt Status/Enable */
#define IRQM_ADC_FIFO_WRITE	(1 << 0)	/* ADC FIFO Write */
#define IRQM_CGT_RESET		(1 << 1)	/* Reset CGT */
#define IRQM_CGT_PAUSE		(1 << 3)	/* Pause CGT */
#define IRQM_ADC_ABOUT_CNT	(1 << 4)	/* About Counter out */
#define IRQM_ADC_DELAY_CNT	(1 << 5)	/* Delay Counter out */
#define IRQM_ADC_SAMPLE_CNT	(1 << 6)	/* ADC Sample Counter */
#define IRQM_DAC1_UCNT		(1 << 7)	/* DAC1 Update Counter */
#define IRQM_DAC2_UCNT		(1 << 8)	/* DAC2 Update Counter */
#define IRQM_UTC1		(1 << 9)	/* User TC1 out */
#define IRQM_UTC1_INV		(1 << 10)	/* User TC1 out, inverted */
#define IRQM_UTC2		(1 << 11)	/* User TC2 out */
#define IRQM_DIGITAL_IT		(1 << 12)	/* Digital Interrupt */
#define IRQM_EXTERNAL_IT	(1 << 13)	/* External Interrupt */
#define IRQM_ETRIG_RISING	(1 << 14)	/* Ext Trigger rising-edge */
#define IRQM_ETRIG_FALLING	(1 << 15)	/* Ext Trigger falling-edge */
#define LAS0_CLEAR		0x0034	/* Clear/Set Interrupt Clear Mask */
#define LAS0_OVERRUN		0x0038	/* Pending interrupts/Clear Overrun */
#define LAS0_PCLK		0x0040	/* Pacer Clock (24bit) */
#define LAS0_BCLK		0x0044	/* Burst Clock (10bit) */
#define LAS0_ADC_SCNT		0x0048	/* A/D Sample counter (10bit) */
#define LAS0_DAC1_UCNT		0x004c	/* D/A1 Update counter (10 bit) */
#define LAS0_DAC2_UCNT		0x0050	/* D/A2 Update counter (10 bit) */
#define LAS0_DCNT		0x0054	/* Delay counter (16 bit) */
#define LAS0_ACNT		0x0058	/* About counter (16 bit) */
#define LAS0_DAC_CLK		0x005c	/* DAC clock (16bit) */
#define LAS0_UTC0		0x0060	/* 8254 TC Counter 0 */
#define LAS0_UTC1		0x0064	/* 8254 TC Counter 1 */
#define LAS0_UTC2		0x0068	/* 8254 TC Counter 2 */
#define LAS0_UTC_CTRL		0x006c	/* 8254 TC Control */
#define LAS0_DIO0		0x0070	/* Digital I/O Port 0 */
#define LAS0_DIO1		0x0074	/* Digital I/O Port 1 */
#define LAS0_DIO0_CTRL		0x0078	/* Digital I/O Control */
#define LAS0_DIO_STATUS		0x007c	/* Digital I/O Status */
#define LAS0_BOARD_RESET	0x0100	/* Board reset */
#define LAS0_DMA0_SRC		0x0104	/* DMA 0 Sources select */
#define LAS0_DMA1_SRC		0x0108	/* DMA 1 Sources select */
#define LAS0_ADC_CONVERSION	0x010c	/* A/D Conversion Signal select */
#define LAS0_BURST_START	0x0110	/* Burst Clock Start Trigger select */
#define LAS0_PACER_START	0x0114	/* Pacer Clock Start Trigger select */
#define LAS0_PACER_STOP		0x0118	/* Pacer Clock Stop Trigger select */
#define LAS0_ACNT_STOP_ENABLE	0x011c	/* About Counter Stop Enable */
#define LAS0_PACER_REPEAT	0x0120	/* Pacer Start Trigger Mode select */
#define LAS0_DIN_START		0x0124	/* HiSpd DI Sampling Signal select */
#define LAS0_DIN_FIFO_CLEAR	0x0128	/* Digital Input FIFO Clear */
#define LAS0_ADC_FIFO_CLEAR	0x012c	/* A/D FIFO Clear */
#define LAS0_CGT_WRITE		0x0130	/* Channel Gain Table Write */
#define LAS0_CGL_WRITE		0x0134	/* Channel Gain Latch Write */
#define LAS0_CG_DATA		0x0138	/* Digital Table Write */
#define LAS0_CGT_ENABLE		0x013c	/* Channel Gain Table Enable */
#define LAS0_CG_ENABLE		0x0140	/* Digital Table Enable */
#define LAS0_CGT_PAUSE		0x0144	/* Table Pause Enable */
#define LAS0_CGT_RESET		0x0148	/* Reset Channel Gain Table */
#define LAS0_CGT_CLEAR		0x014c	/* Clear Channel Gain Table */
#define LAS0_DAC1_CTRL		0x0150	/* D/A1 output type/range */
#define LAS0_DAC1_SRC		0x0154	/* D/A1 update source */
#define LAS0_DAC1_CYCLE		0x0158	/* D/A1 cycle mode */
#define LAS0_DAC1_RESET		0x015c	/* D/A1 FIFO reset */
#define LAS0_DAC1_FIFO_CLEAR	0x0160	/* D/A1 FIFO clear */
#define LAS0_DAC2_CTRL		0x0164	/* D/A2 output type/range */
#define LAS0_DAC2_SRC		0x0168	/* D/A2 update source */
#define LAS0_DAC2_CYCLE		0x016c	/* D/A2 cycle mode */
#define LAS0_DAC2_RESET		0x0170	/* D/A2 FIFO reset */
#define LAS0_DAC2_FIFO_CLEAR	0x0174	/* D/A2 FIFO clear */
#define LAS0_ADC_SCNT_SRC	0x0178	/* A/D Sample Counter Source select */
#define LAS0_PACER_SELECT	0x0180	/* Pacer Clock select */
#define LAS0_SBUS0_SRC		0x0184	/* SyncBus 0 Source select */
#define LAS0_SBUS0_ENABLE	0x0188	/* SyncBus 0 enable */
#define LAS0_SBUS1_SRC		0x018c	/* SyncBus 1 Source select */
#define LAS0_SBUS1_ENABLE	0x0190	/* SyncBus 1 enable */
#define LAS0_SBUS2_SRC		0x0198	/* SyncBus 2 Source select */
#define LAS0_SBUS2_ENABLE	0x019c	/* SyncBus 2 enable */
#define LAS0_ETRG_POLARITY	0x01a4	/* Ext. Trigger polarity select */
#define LAS0_EINT_POLARITY	0x01a8	/* Ext. Interrupt polarity select */
#define LAS0_UTC0_CLOCK		0x01ac	/* UTC0 Clock select */
#define LAS0_UTC0_GATE		0x01b0	/* UTC0 Gate select */
#define LAS0_UTC1_CLOCK		0x01b4	/* UTC1 Clock select */
#define LAS0_UTC1_GATE		0x01b8	/* UTC1 Gate select */
#define LAS0_UTC2_CLOCK		0x01bc	/* UTC2 Clock select */
#define LAS0_UTC2_GATE		0x01c0	/* UTC2 Gate select */
#define LAS0_UOUT0_SELECT	0x01c4	/* User Output 0 source select */
#define LAS0_UOUT1_SELECT	0x01c8	/* User Output 1 source select */
#define LAS0_DMA0_RESET		0x01cc	/* DMA0 Request state machine reset */
#define LAS0_DMA1_RESET		0x01d0	/* DMA1 Request state machine reset */

/*
 * Local Address Space 1 Offsets
 */
#define LAS1_ADC_FIFO		0x0000	/* A/D FIFO (16bit) */
#define LAS1_HDIO_FIFO		0x0004	/* HiSpd DI FIFO (16bit) */
#define LAS1_DAC1_FIFO		0x0008	/* D/A1 FIFO (16bit) */
#define LAS1_DAC2_FIFO		0x000c	/* D/A2 FIFO (16bit) */

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*======================================================================
  Driver specific stuff (tunable)
======================================================================*/

/* We really only need 2 buffers.  More than that means being much
   smarter about knowing which ones are full. */
#define DMA_CHAIN_COUNT 2	/* max DMA segments/buffers in a ring (min 2) */

/* Target period for periodic transfers.  This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000	/* 10 ms (in nanoseconds) */

/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST	128	/* max channel list that we allow */

/* tuning for ai/ao instruction done polling */
#ifdef FAST_SPIN
#define WAIT_QUIETLY		/* as nothing, spin on done bit */
#define RTD_ADC_TIMEOUT	66000	/* 2 msec at 33mhz bus rate */
#define RTD_DAC_TIMEOUT	66000
#define RTD_DMA_TIMEOUT	33000	/* 1 msec */
#else
/* by delaying, power and electrical noise are reduced somewhat */
251
#define WAIT_QUIETLY	udelay(1)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#define RTD_ADC_TIMEOUT	2000	/* in usec */
#define RTD_DAC_TIMEOUT	2000	/* in usec */
#define RTD_DMA_TIMEOUT	1000	/* in usec */
#endif

/*======================================================================
  Board specific stuff
======================================================================*/

#define RTD_CLOCK_RATE	8000000	/* 8Mhz onboard clock */
#define RTD_CLOCK_BASE	125	/* clock period in ns */

/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED	1625	/* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1	875	/* if single channel, in nanoseconds */

#define RTD_MIN_SPEED	2097151875	/* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1	5000000	/* 200Hz, in nanoseconds */

/* Setup continuous ring of 1/2 FIFO transfers.  See RTD manual p91 */
#define DMA_MODE_BITS (\
		       PLX_LOCAL_BUS_16_WIDE_BITS \
		       | PLX_DMA_EN_READYIN_BIT \
		       | PLX_DMA_LOCAL_BURST_EN_BIT \
		       | PLX_EN_CHAIN_BIT \
		       | PLX_DMA_INTR_PCI_BIT \
		       | PLX_LOCAL_ADDR_CONST_BIT \
		       | PLX_DEMAND_MODE_BIT)

#define DMA_TRANSFER_BITS (\
284
/* descriptors in PCI memory*/  PLX_DESC_IN_PCI_BIT \
285
286
287
288
289
290
291
292
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */		| PLX_XFER_LOCAL_TO_PCI)

/*======================================================================
  Comedi specific stuff
======================================================================*/

/*
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
 * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
 */
static const struct comedi_lrange rtd_ai_7520_range = {
	18, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
	}
319
320
321
};

/* PCI4520 has two more gains (6 more entries) */
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
static const struct comedi_lrange rtd_ai_4520_range = {
	24, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		BIP_RANGE(5.0 / 64),
		BIP_RANGE(5.0 / 128),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		BIP_RANGE(10.0 / 64),
		BIP_RANGE(10.0 / 128),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
		UNI_RANGE(10.0 / 64),
		UNI_RANGE(10.0 / 128),
	}
352
353
354
};

/* Table order matches range values */
355
356
357
358
359
360
361
static const struct comedi_lrange rtd_ao_range = {
	4, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10),
	}
362
363
};

364
365
366
367
368
enum rtd_boardid {
	BOARD_DM7520,
	BOARD_PCI4520,
};

369
struct rtdBoard {
370
	const char *name;
371
372
	int range10Start;	/* start of +-10V range */
	int rangeUniStart;	/* start of +10V range */
373
	const struct comedi_lrange *ai_range;
374
};
375

376
static const struct rtdBoard rtd520Boards[] = {
377
	[BOARD_DM7520] = {
378
379
380
		.name		= "DM7520",
		.range10Start	= 6,
		.rangeUniStart	= 12,
381
		.ai_range	= &rtd_ai_7520_range,
382
383
	},
	[BOARD_PCI4520] = {
384
385
386
		.name		= "PCI4520",
		.range10Start	= 8,
		.rangeUniStart	= 16,
387
		.ai_range	= &rtd_ai_4520_range,
388
	},
389
390
};

391
struct rtd_private {
392
	/* memory mapped board structures */
393
394
395
	void __iomem *las0;
	void __iomem *las1;
	void __iomem *lcfg;
396
397

	long aiCount;		/* total transfer size (samples) */
398
	int transCount;		/* # to transfer data. 0->1/2FIFO */
399
400
401
402
403
404
	int flags;		/* flag event modes */

	/* channel list info */
	/* chanBipolar tracks whether a channel is bipolar (and needs +2048) */
	unsigned char chanBipolar[RTD_MAX_CHANLIST / 8];	/* bit array */

405
	unsigned int ao_readback[2];
406
407

	unsigned fifoLen;
408
};
409
410
411
412
413
414
415

/* bit defines for "flags" */
#define SEND_EOS	0x01	/* send End Of Scan events */
#define DMA0_ACTIVE	0x02	/* DMA0 is active */
#define DMA1_ACTIVE	0x04	/* DMA1 is active */

/* Macros for accessing channel list bit array */
416
#define CHAN_ARRAY_TEST(array, index) \
417
	(((array)[(index)/8] >> ((index) & 0x7)) & 0x1)
418
#define CHAN_ARRAY_SET(array, index) \
419
	(((array)[(index)/8] |= 1 << ((index) & 0x7)))
420
#define CHAN_ARRAY_CLEAR(array, index) \
421
422
	(((array)[(index)/8] &= ~(1 << ((index) & 0x7))))

423
/*
424
425
426
427
428
  Given a desired period and the clock period (both in ns),
  return the proper counter value (divider-1).
  Sets the original period to be the true value.
  Note: you have to check if the value is larger than the counter range!
*/
429
static int rtd_ns_to_timer_base(unsigned int *nanosec,
430
				int round_mode, int base)
431
{
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
	int divider;

	switch (round_mode) {
	case TRIG_ROUND_NEAREST:
	default:
		divider = (*nanosec + base / 2) / base;
		break;
	case TRIG_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case TRIG_ROUND_UP:
		divider = (*nanosec + base - 1) / base;
		break;
	}
	if (divider < 2)
		divider = 2;	/* min is divide by 2 */

	/* Note: we don't check for max, because different timers
	   have different ranges */

	*nanosec = base * divider;
	return divider - 1;	/* countdown is divisor+1 */
}
455
456

/*
457
458
459
460
461
462
463
464
  Given a desired period (in ns),
  return the proper counter value (divider-1) for the internal clock.
  Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
	return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
465

466
467
468
469
470
471
/*
  Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
					 unsigned int comediChan, int chanIndex)
{				/* index in channel list */
472
	const struct rtdBoard *thisboard = comedi_board(dev);
473
	struct rtd_private *devpriv = dev->private;
474
475
	unsigned int chan, range, aref;
	unsigned short r = 0;
476

477
478
479
	chan = CR_CHAN(comediChan);
	range = CR_RANGE(comediChan);
	aref = CR_AREF(comediChan);
480

481
	r |= chan & 0xf;
482

483
	/* Note: we also setup the channel list bipolar flag array */
484
485
486
487
	if (range < thisboard->range10Start) {
		/* +-5 range */
		r |= 0x000;
		r |= (range & 0x7) << 4;
488
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
489
490
491
	} else if (range < thisboard->rangeUniStart) {
		/* +-10 range */
		r |= 0x100;
492
493
		r |= ((range - thisboard->range10Start) & 0x7) << 4;
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
494
495
496
	} else {
		/* +10 range */
		r |= 0x200;
497
498
499
		r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
		CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
	}
500

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
	switch (aref) {
	case AREF_GROUND:	/* on-board ground */
		break;

	case AREF_COMMON:
		r |= 0x80;	/* ref external analog common */
		break;

	case AREF_DIFF:
		r |= 0x400;	/* differential inputs */
		break;

	case AREF_OTHER:	/* ??? */
		break;
	}
	/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
	   chan, range, aref, r); */
	return r;
}

/*
  Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
				      unsigned int n_chan, unsigned int *list)
{
527
	struct rtd_private *devpriv = dev->private;
528

529
530
	if (n_chan > 1) {	/* setup channel gain table */
		int ii;
531
532

		writel(0, devpriv->las0 + LAS0_CGT_CLEAR);
533
		writel(1, devpriv->las0 + LAS0_CGT_ENABLE);
534
		for (ii = 0; ii < n_chan; ii++) {
535
536
			writel(rtdConvertChanGain(dev, list[ii], ii),
				devpriv->las0 + LAS0_CGT_WRITE);
537
		}
538
	} else {		/* just use the channel gain latch */
539
		writel(0, devpriv->las0 + LAS0_CGT_ENABLE);
540
541
		writel(rtdConvertChanGain(dev, list[0], 0),
			devpriv->las0 + LAS0_CGL_WRITE);
542
	}
543
544
545
546
547
548
}

/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
549
	struct rtd_private *devpriv = dev->private;
550
551
552
553
554
	unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
	unsigned i;
	static const unsigned limit = 0x2000;
	unsigned fifo_size = 0;

555
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
556
	rtd_load_channelgain_list(dev, 1, &chanspec);
557
	/* ADC conversion trigger source: SOFTWARE */
558
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
559
560
561
562
	/* convert  samples */
	for (i = 0; i < limit; ++i) {
		unsigned fifo_status;
		/* trigger conversion */
563
		writew(0, devpriv->las0 + LAS0_ADC);
564
		udelay(1);
565
		fifo_status = readl(devpriv->las0 + LAS0_ADC);
566
567
568
		if ((fifo_status & FS_ADC_HEMPTY) == 0) {
			fifo_size = 2 * i;
			break;
569
		}
570
571
	}
	if (i == limit) {
572
		dev_info(dev->class_dev, "failed to probe fifo size.\n");
573
574
		return -EIO;
	}
575
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
576
	if (fifo_size != 0x400 && fifo_size != 0x2000) {
577
578
579
		dev_info(dev->class_dev,
			 "unexpected fifo size of %i, expected 1024 or 8192.\n",
			 fifo_size);
580
		return -EIO;
581
	}
582
583
	return fifo_size;
}
584

585
586
587
588
/*
  "instructions" read/write data in "one-shot" or "software-triggered"
  mode (simplest case).
  This doesn't use interrupts.
589

590
591
592
593
594
595
596
  Note, we don't do any settling delays.  Use a instruction list to
  select, delay, then read.
 */
static int rtd_ai_rinsn(struct comedi_device *dev,
			struct comedi_subdevice *s, struct comedi_insn *insn,
			unsigned int *data)
{
597
	struct rtd_private *devpriv = dev->private;
598
599
	int n, ii;
	int stat;
600

601
	/* clear any old fifo data */
602
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
603

604
605
	/* write channel to multiplexer and clear channel gain table */
	rtd_load_channelgain_list(dev, 1, &insn->chanspec);
606

607
	/* ADC conversion trigger source: SOFTWARE */
608
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
609

610
611
612
613
	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		s16 d;
		/* trigger conversion */
614
		writew(0, devpriv->las0 + LAS0_ADC);
615
616

		for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
617
			stat = readl(devpriv->las0 + LAS0_ADC);
618
619
620
621
			if (stat & FS_ADC_NOT_EMPTY)	/* 1 -> not empty */
				break;
			WAIT_QUIETLY;
		}
622
		if (ii >= RTD_ADC_TIMEOUT)
623
624
625
			return -ETIMEDOUT;

		/* read data */
626
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
627
628
629
630
631
632
633
		/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
			/* convert to comedi unsigned data */
			data[n] = d + 2048;
		else
			data[n] = d;
634
635
	}

636
637
638
	/* return the number of samples read/written */
	return n;
}
639

640
641
642
/*
  Get what we know is there.... Fast!
  This uses 1/2 the bus cycles of read_dregs (below).
643

644
645
646
647
648
  The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
		     int count)
{
649
	struct rtd_private *devpriv = dev->private;
650
	int ii;
651

652
653
654
	for (ii = 0; ii < count; ii++) {
		short sample;
		s16 d;
655

656
		if (0 == devpriv->aiCount) {	/* done */
657
			d = readw(devpriv->las1 + LAS1_ADC_FIFO);
658
659
			continue;
		}
660

661
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
662
663
664
665
666
667
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
668

669
670
		if (!comedi_buf_put(s->async, sample))
			return -1;
671

672
673
674
675
676
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
677

678
679
680
681
682
/*
  unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
683
	struct rtd_private *devpriv = dev->private;
684

685
	while (readl(devpriv->las0 + LAS0_ADC) & FS_ADC_NOT_EMPTY) {
686
		short sample;
687
		s16 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
688

689
690
691
		if (0 == devpriv->aiCount) {	/* done */
			continue;	/* read rest */
		}
692

693
694
695
696
697
698
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
699

700
701
		if (!comedi_buf_put(s->async, sample))
			return -1;
702

703
704
705
706
707
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
708

709
710
711
712
713
714
715
716
717
/*
  Handle all rtd520 interrupts.
  Runs atomically and is never re-entered.
  This is a "slow handler";  other interrupts may be active.
  The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq,	/* interrupt number (ignored) */
				 void *d)
{				/* our data *//* cpu context (ignored) */
718
	struct comedi_device *dev = d;
719
	struct comedi_subdevice *s = &dev->subdevices[0];
720
	struct rtd_private *devpriv = dev->private;
721
	u32 overrun;
722
723
	u16 status;
	u16 fifoStatus;
724

725
726
	if (!dev->attached)
		return IRQ_NONE;
727

728
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
729
	/* check for FIFO full, this automatically halts the ADC! */
730
	if (!(fifoStatus & FS_ADC_NOT_FULL))	/* 0 -> full */
731
732
		goto abortTransfer;

733
	status = readw(devpriv->las0 + LAS0_IT);
734
735
736
737
738
	/* if interrupt was not caused by our board, or handled above */
	if (0 == status)
		return IRQ_HANDLED;

	if (status & IRQM_ADC_ABOUT_CNT) {	/* sample count -> read FIFO */
739
740
741
742
743
744
745
746
		/*
		 * since the priority interrupt controller may have queued
		 * a sample counter interrupt, even though we have already
		 * finished, we must handle the possibility that there is
		 * no data here
		 */
		if (!(fifoStatus & FS_ADC_HEMPTY)) {
			/* FIFO half full */
747
			if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0)
748
				goto abortTransfer;
749
750

			if (0 == devpriv->aiCount)
751
				goto transferDone;
752

753
			comedi_event(dev, s);
754
755
756
		} else if (devpriv->transCount > 0) {
			if (fifoStatus & FS_ADC_NOT_EMPTY) {
				/* FIFO not empty */
757
				if (ai_read_n(dev, s, devpriv->transCount) < 0)
758
					goto abortTransfer;
759
760

				if (0 == devpriv->aiCount)
761
					goto transferDone;
762

763
764
				comedi_event(dev, s);
			}
765
766
767
		}
	}

768
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
769
	if (overrun)
770
		goto abortTransfer;
771

772
	/* clear the interrupt */
773
	writew(status, devpriv->las0 + LAS0_CLEAR);
774
	readw(devpriv->las0 + LAS0_CLEAR);
775
	return IRQ_HANDLED;
776

777
abortTransfer:
778
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
779
780
781
	s->async->events |= COMEDI_CB_ERROR;
	devpriv->aiCount = 0;	/* stop and don't transfer any more */
	/* fall into transferDone */
782

783
transferDone:
784
	/* pacer stop source: SOFTWARE */
785
	writel(0, devpriv->las0 + LAS0_PACER_STOP);
786
	writel(0, devpriv->las0 + LAS0_PACER);	/* stop pacer */
787
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
788
	writew(0, devpriv->las0 + LAS0_IT);
789

790
	if (devpriv->aiCount > 0) {	/* there shouldn't be anything left */
791
		fifoStatus = readl(devpriv->las0 + LAS0_ADC);
792
793
		ai_read_dregs(dev, s);	/* read anything left in FIFO */
	}
794

795
796
	s->async->events |= COMEDI_CB_EOA;	/* signal end to comedi */
	comedi_event(dev, s);
797

798
	/* clear the interrupt */
799
	status = readw(devpriv->las0 + LAS0_IT);
800
	writew(status, devpriv->las0 + LAS0_CLEAR);
801
	readw(devpriv->las0 + LAS0_CLEAR);
802

803
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
804
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
805
806

	return IRQ_HANDLED;
807
808
}

809
810
811
/*
  cmdtest tests a particular command to see if it is valid.
  Using the cmdtest ioctl, a user can create a valid cmd
812
  and then have it executed by the cmd ioctl (asynchronously).
813
814
815
816
817
818
819

  cmdtest returns 1,2,3,4 or 0, depending on which tests
  the command passes.
*/

static int rtd_ai_cmdtest(struct comedi_device *dev,
			  struct comedi_subdevice *s, struct comedi_cmd *cmd)
820
{
821
822
	int err = 0;
	int tmp;
823

824
	/* Step 1 : check if triggers are trivially valid */
825

826
827
828
829
830
831
	err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
832
833
834
835

	if (err)
		return 1;

836
	/* Step 2a : make sure trigger sources are unique */
837

838
839
840
841
842
	err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
	err |= cfc_check_trigger_is_unique(cmd->convert_src);
	err |= cfc_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */
843

844
845
	if (err)
		return 2;
846

847
	/* Step 3: check if arguments are trivially valid */
848

849
	err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
850

851
852
853
	if (cmd->scan_begin_src == TRIG_TIMER) {
		/* Note: these are time periods, not actual rates */
		if (1 == cmd->chanlist_len) {	/* no scanning */
854
855
			if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
						      RTD_MAX_SPEED_1)) {
856
857
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_UP);
858
				err |= -EINVAL;
859
			}
860
861
			if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
						      RTD_MIN_SPEED_1)) {
862
863
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_DOWN);
864
				err |= -EINVAL;
865
866
			}
		} else {
867
868
			if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
						      RTD_MAX_SPEED)) {
869
870
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_UP);
871
				err |= -EINVAL;
872
			}
873
874
			if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
						      RTD_MIN_SPEED)) {
875
876
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_DOWN);
877
				err |= -EINVAL;
878
			}
879
		}
880
881
882
883
	} else {
		/* external trigger */
		/* should be level/edge, hi/lo specification here */
		/* should specify multiple external triggers */
884
		err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
885
	}
886

887
888
	if (cmd->convert_src == TRIG_TIMER) {
		if (1 == cmd->chanlist_len) {	/* no scanning */
889
890
			if (cfc_check_trigger_arg_min(&cmd->convert_arg,
						      RTD_MAX_SPEED_1)) {
891
892
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_UP);
893
				err |= -EINVAL;
894
			}
895
896
			if (cfc_check_trigger_arg_max(&cmd->convert_arg,
						      RTD_MIN_SPEED_1)) {
897
898
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_DOWN);
899
				err |= -EINVAL;
900
901
			}
		} else {
902
903
			if (cfc_check_trigger_arg_min(&cmd->convert_arg,
						      RTD_MAX_SPEED)) {
904
905
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_UP);
906
				err |= -EINVAL;
907
			}
908
909
			if (cfc_check_trigger_arg_max(&cmd->convert_arg,
						      RTD_MIN_SPEED)) {
910
911
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_DOWN);
912
				err |= -EINVAL;
913
914
915
916
917
			}
		}
	} else {
		/* external trigger */
		/* see above */
918
		err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 9);
919
920
921
922
923
924
	}

	if (cmd->stop_src == TRIG_COUNT) {
		/* TODO check for rounding error due to counter wrap */
	} else {
		/* TRIG_NONE */
925
		err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
926
	}
927

928
929
	if (err)
		return 3;
930

931
932
933
934
935
936

	/* step 4: fix up any arguments */

	if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
		cmd->chanlist_len = RTD_MAX_CHANLIST;
		err++;
937
	}
938
939
940
941
942
943
	if (cmd->scan_begin_src == TRIG_TIMER) {
		tmp = cmd->scan_begin_arg;
		rtd_ns_to_timer(&cmd->scan_begin_arg,
				cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->scan_begin_arg)
			err++;
944

945
946
947
948
949
950
951
	}
	if (cmd->convert_src == TRIG_TIMER) {
		tmp = cmd->convert_arg;
		rtd_ns_to_timer(&cmd->convert_arg,
				cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->convert_arg)
			err++;
952

953
954
955
956
957
958
		if (cmd->scan_begin_src == TRIG_TIMER
		    && (cmd->scan_begin_arg
			< (cmd->convert_arg * cmd->scan_end_arg))) {
			cmd->scan_begin_arg =
			    cmd->convert_arg * cmd->scan_end_arg;
			err++;
959
		}
960
	}
961

962
963
	if (err)
		return 4;
964
965
966
967
968

	return 0;
}

/*
969
970
971
972
  Execute a analog in command with many possible triggering options.
  The data get stored in the async structure of the subdevice.
  This is usually done by an interrupt handler.
  Userland gets to the data using read calls.
973
*/
974
975
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
976
	struct rtd_private *devpriv = dev->private;
977
978
	struct comedi_cmd *cmd = &s->async->cmd;
	int timer;
979

980
	/* stop anything currently running */
981
	/* pacer stop source: SOFTWARE */
982
	writel(0, devpriv->las0 + LAS0_PACER_STOP);
983
	writel(0, devpriv->las0 + LAS0_PACER);	/* stop pacer */
984
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
985
	writew(0, devpriv->las0 + LAS0_IT);
986
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
987
	writel(0, devpriv->las0 + LAS0_OVERRUN);
988

989
990
991
	/* start configuration */
	/* load channel list and reset CGT */
	rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
992

993
994
	/* setup the common case and override if needed */
	if (cmd->chanlist_len > 1) {
995
		/* pacer start source: SOFTWARE */
996
		writel(0, devpriv->las0 + LAS0_PACER_START);
997
		/* burst trigger source: PACER */
998
		writel(1, devpriv->las0 + LAS0_BURST_START);
999
		/* ADC conversion trigger source: BURST */
1000
		writel(2, devpriv->las0 + LAS0_ADC_CONVERSION);