dm-thin.c 75.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison.h"
9
#include "dm.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
24
#define ENDIO_HOOK_POOL_SIZE 1024
25
26
#define MAPPING_POOL_SIZE 1024
#define PRISON_CELLS 1024
27
#define COMMIT_PERIOD HZ
28

29
30
31
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
64
 * including all devices that share this block.  (see dm_deferred_set code)
65
66
67
68
69
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
70
 * (process_prepared_mapping).  This act of inserting breaks some
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
static void build_data_key(struct dm_thin_device *td,
108
			   dm_block_t b, struct dm_cell_key *key)
109
110
111
112
113
114
115
{
	key->virtual = 0;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116
			      struct dm_cell_key *key)
117
118
119
120
121
122
123
124
125
126
127
128
129
{
	key->virtual = 1;
	key->dev = dm_thin_dev_id(td);
	key->block = b;
}

/*----------------------------------------------------------------*/

/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
130
struct dm_thin_new_mapping;
131

132
133
134
135
136
137
138
139
140
/*
 * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

141
struct pool_features {
142
143
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
144
145
146
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
147
148
};

149
150
151
152
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

153
154
155
156
157
158
159
160
161
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
162
	uint32_t sectors_per_block;
163
	int sectors_per_block_shift;
164

165
	struct pool_features pf;
166
167
168
	unsigned low_water_triggered:1;	/* A dm event has been sent */
	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */

169
	struct dm_bio_prison *prison;
170
171
172
173
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
	struct work_struct worker;
174
	struct delayed_work waker;
175

176
	unsigned long last_commit_jiffies;
177
	unsigned ref_count;
178
179
180
181
182

	spinlock_t lock;
	struct bio_list deferred_bios;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
183
	struct list_head prepared_discards;
184
185
186

	struct bio_list retry_on_resume_list;

187
188
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
189

Mike Snitzer's avatar
Mike Snitzer committed
190
	struct dm_thin_new_mapping *next_mapping;
191
	mempool_t *mapping_pool;
192
193
194
195
196
197

	process_bio_fn process_bio;
	process_bio_fn process_discard;

	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
198
199
};

200
201
202
static enum pool_mode get_pool_mode(struct pool *pool);
static void set_pool_mode(struct pool *pool, enum pool_mode mode);

203
204
205
206
207
208
209
210
211
212
213
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
214
215
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216
217
218
219
220
221
222
};

/*
 * Target context for a thin.
 */
struct thin_c {
	struct dm_dev *pool_dev;
223
	struct dm_dev *origin_dev;
224
225
226
227
228
229
230
231
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
};

/*----------------------------------------------------------------*/

232
233
234
235
236
237
238
239
240
241
242
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

282
283
284
285
286
287
288
289
290
291
292
293
294
static void cell_defer_no_holder_no_free(struct thin_c *tc,
					 struct dm_bio_prison_cell *cell)
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
	spin_unlock_irqrestore(&pool->lock, flags);

	wake_worker(pool);
}

295
296
297
298
299
300
301
302
303
static void cell_error(struct pool *pool,
		       struct dm_bio_prison_cell *cell)
{
	dm_cell_error(pool->prison, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

/*----------------------------------------------------------------*/

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
364
struct dm_thin_endio_hook {
365
	struct thin_c *tc;
366
367
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
368
	struct dm_thin_new_mapping *overwrite_mapping;
369
370
};

371
372
373
374
375
376
377
378
379
380
static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
{
	struct bio *bio;
	struct bio_list bios;

	bio_list_init(&bios);
	bio_list_merge(&bios, master);
	bio_list_init(master);

	while ((bio = bio_list_pop(&bios))) {
381
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
382

383
		if (h->tc == tc)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
			bio_endio(bio, DM_ENDIO_REQUEUE);
		else
			bio_list_add(master, bio);
	}
}

static void requeue_io(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	__requeue_bio_list(tc, &pool->deferred_bios);
	__requeue_bio_list(tc, &pool->retry_on_resume_list);
	spin_unlock_irqrestore(&pool->lock, flags);
}

/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

408
409
410
411
412
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

413
414
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
415
	struct pool *pool = tc->pool;
416
417
	sector_t block_nr = bio->bi_sector;

418
419
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
420
	else
421
		(void) sector_div(block_nr, pool->sectors_per_block);
422
423

	return block_nr;
424
425
426
427
428
}

static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
429
	sector_t bi_sector = bio->bi_sector;
430
431

	bio->bi_bdev = tc->pool_dev->bdev;
432
	if (block_size_is_power_of_two(pool))
433
434
		bio->bi_sector = (block << pool->sectors_per_block_shift) |
				(bi_sector & (pool->sectors_per_block - 1));
435
436
437
	else
		bio->bi_sector = (block * pool->sectors_per_block) +
				 sector_div(bi_sector, pool->sectors_per_block);
438
439
}

440
441
442
443
444
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

445
446
447
448
449
450
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
		dm_thin_changed_this_transaction(tc->td);
}

451
452
453
454
455
456
457
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

	if (bio->bi_rw & REQ_DISCARD)
		return;

458
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459
460
461
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

462
static void issue(struct thin_c *tc, struct bio *bio)
463
464
465
466
{
	struct pool *pool = tc->pool;
	unsigned long flags;

467
468
469
470
471
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

472
	/*
473
474
475
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
476
	 */
477
478
479
480
481
482
483
484
485
486
487
488
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
489
490
}

491
492
493
494
495
496
497
498
499
500
501
502
503
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

504
505
506
507
508
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
509
struct dm_thin_new_mapping {
510
511
	struct list_head list;

512
513
514
515
	bool quiesced:1;
	bool prepared:1;
	bool pass_discard:1;
	bool definitely_not_shared:1;
516

517
	int err;
518
519
520
	struct thin_c *tc;
	dm_block_t virt_block;
	dm_block_t data_block;
Mike Snitzer's avatar
Mike Snitzer committed
521
	struct dm_bio_prison_cell *cell, *cell2;
522
523
524
525
526
527
528
529
530
531
532

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

Mike Snitzer's avatar
Mike Snitzer committed
533
static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534
535
536
{
	struct pool *pool = m->tc->pool;

537
	if (m->quiesced && m->prepared) {
538
		list_add_tail(&m->list, &pool->prepared_mappings);
539
540
541
542
543
544
545
		wake_worker(pool);
	}
}

static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	unsigned long flags;
Mike Snitzer's avatar
Mike Snitzer committed
546
	struct dm_thin_new_mapping *m = context;
547
548
549
550
551
	struct pool *pool = m->tc->pool;

	m->err = read_err || write_err ? -EIO : 0;

	spin_lock_irqsave(&pool->lock, flags);
552
	m->prepared = true;
553
554
555
556
557
558
559
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

static void overwrite_endio(struct bio *bio, int err)
{
	unsigned long flags;
560
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
561
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
562
563
564
565
566
	struct pool *pool = m->tc->pool;

	m->err = err;

	spin_lock_irqsave(&pool->lock, flags);
567
	m->prepared = true;
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
	__maybe_add_mapping(m);
	spin_unlock_irqrestore(&pool->lock, flags);
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
 * This sends the bios in the cell back to the deferred_bios list.
 */
Joe Thornber's avatar
Joe Thornber committed
585
static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586
587
588
589
590
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
591
	cell_release(pool, cell, &pool->deferred_bios);
592
593
594
595
596
597
	spin_unlock_irqrestore(&tc->pool->lock, flags);

	wake_worker(pool);
}

/*
598
 * Same as cell_defer above, except it omits the original holder of the cell.
599
 */
600
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601
602
603
604
605
{
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
606
	cell_release_no_holder(pool, cell, &pool->deferred_bios);
607
608
609
610
611
	spin_unlock_irqrestore(&pool->lock, flags);

	wake_worker(pool);
}

612
613
614
615
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
	if (m->bio)
		m->bio->bi_end_io = m->saved_bi_end_io;
616
	cell_error(m->tc->pool, m->cell);
617
618
619
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
620

Mike Snitzer's avatar
Mike Snitzer committed
621
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
622
623
{
	struct thin_c *tc = m->tc;
624
	struct pool *pool = tc->pool;
625
626
627
628
629
630
631
632
	struct bio *bio;
	int r;

	bio = m->bio;
	if (bio)
		bio->bi_end_io = m->saved_bi_end_io;

	if (m->err) {
633
		cell_error(pool, m->cell);
634
		goto out;
635
636
637
638
639
640
641
642
643
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
	if (r) {
644
645
646
		DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
			    dm_device_name(pool->pool_md), r);
		set_pool_mode(pool, PM_READ_ONLY);
647
		cell_error(pool, m->cell);
648
		goto out;
649
650
651
652
653
654
655
656
657
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
658
		cell_defer_no_holder(tc, m->cell);
659
660
		bio_endio(bio, 0);
	} else
Joe Thornber's avatar
Joe Thornber committed
661
		cell_defer(tc, m->cell);
662

663
out:
664
	list_del(&m->list);
665
	mempool_free(m, pool->mapping_pool);
666
667
}

668
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
669
670
671
{
	struct thin_c *tc = m->tc;

672
	bio_io_error(m->bio);
673
674
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
675
676
677
678
679
680
	mempool_free(m, tc->pool->mapping_pool);
}

static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
681

682
	inc_all_io_entry(tc->pool, m->bio);
683
684
	cell_defer_no_holder(tc, m->cell);
	cell_defer_no_holder(tc, m->cell2);
685

Joe Thornber's avatar
Joe Thornber committed
686
	if (m->pass_discard)
687
688
689
690
691
692
693
694
695
		if (m->definitely_not_shared)
			remap_and_issue(tc, m->bio, m->data_block);
		else {
			bool used = false;
			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
				bio_endio(m->bio, 0);
			else
				remap_and_issue(tc, m->bio, m->data_block);
		}
Joe Thornber's avatar
Joe Thornber committed
696
697
698
699
700
701
	else
		bio_endio(m->bio, 0);

	mempool_free(m, tc->pool->mapping_pool);
}

702
703
704
705
706
707
708
static void process_prepared_discard(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_block(tc->td, m->virt_block);
	if (r)
709
		DMERR_LIMIT("dm_thin_remove_block() failed");
710
711
712
713

	process_prepared_discard_passdown(m);
}

Joe Thornber's avatar
Joe Thornber committed
714
static void process_prepared(struct pool *pool, struct list_head *head,
715
			     process_mapping_fn *fn)
716
717
718
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
719
	struct dm_thin_new_mapping *m, *tmp;
720
721
722

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
723
	list_splice_init(head, &maps);
724
725
726
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
727
		(*fn)(m);
728
729
730
731
732
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
733
static int io_overlaps_block(struct pool *pool, struct bio *bio)
734
{
735
	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
736
737
738
739
740
741
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
761
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
762
{
763
	struct dm_thin_new_mapping *m = pool->next_mapping;
764
765
766

	BUG_ON(!pool->next_mapping);

767
768
769
770
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

771
772
	pool->next_mapping = NULL;

773
	return m;
774
775
776
}

static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
777
778
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
779
			  struct dm_bio_prison_cell *cell, struct bio *bio)
780
781
782
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
783
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
784
785
786
787
788
789

	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_dest;
	m->cell = cell;

790
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
791
		m->quiesced = true;
792
793
794
795
796
797
798
799

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
	if (io_overwrites_block(pool, bio)) {
800
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
801

802
		h->overwrite_mapping = m;
803
804
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
805
		inc_all_io_entry(pool, bio);
806
807
808
809
		remap_and_issue(tc, bio, data_dest);
	} else {
		struct dm_io_region from, to;

810
		from.bdev = origin->bdev;
811
812
813
814
815
816
817
818
819
820
821
		from.sector = data_origin * pool->sectors_per_block;
		from.count = pool->sectors_per_block;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
822
			DMERR_LIMIT("dm_kcopyd_copy() failed");
823
			cell_error(pool, cell);
824
825
826
827
		}
	}
}

828
829
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_origin, dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
830
				   struct dm_bio_prison_cell *cell, struct bio *bio)
831
832
833
834
835
836
837
{
	schedule_copy(tc, virt_block, tc->pool_dev,
		      data_origin, data_dest, cell, bio);
}

static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
				   dm_block_t data_dest,
Mike Snitzer's avatar
Mike Snitzer committed
838
				   struct dm_bio_prison_cell *cell, struct bio *bio)
839
840
841
842
843
{
	schedule_copy(tc, virt_block, tc->origin_dev,
		      virt_block, data_dest, cell, bio);
}

844
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
Mike Snitzer's avatar
Mike Snitzer committed
845
			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
846
847
848
			  struct bio *bio)
{
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
849
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
850

851
852
	m->quiesced = true;
	m->prepared = false;
853
854
855
856
857
858
859
860
861
862
	m->tc = tc;
	m->virt_block = virt_block;
	m->data_block = data_block;
	m->cell = cell;

	/*
	 * If the whole block of data is being overwritten or we are not
	 * zeroing pre-existing data, we can issue the bio immediately.
	 * Otherwise we use kcopyd to zero the data first.
	 */
863
	if (!pool->pf.zero_new_blocks)
864
865
866
		process_prepared_mapping(m);

	else if (io_overwrites_block(pool, bio)) {
867
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
868

869
		h->overwrite_mapping = m;
870
871
		m->bio = bio;
		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
872
		inc_all_io_entry(pool, bio);
873
874
875
876
877
878
879
880
881
882
883
884
		remap_and_issue(tc, bio, data_block);
	} else {
		int r;
		struct dm_io_region to;

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_block * pool->sectors_per_block;
		to.count = pool->sectors_per_block;

		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
		if (r < 0) {
			mempool_free(m, pool->mapping_pool);
885
			DMERR_LIMIT("dm_kcopyd_zero() failed");
886
			cell_error(pool, cell);
887
888
889
890
		}
	}
}

891
892
893
894
/*
 * A non-zero return indicates read_only or fail_io mode.
 * Many callers don't care about the return value.
 */
895
static int commit(struct pool *pool)
896
897
898
899
900
901
{
	int r;

	if (get_pool_mode(pool) != PM_WRITE)
		return -EINVAL;

902
903
904
905
	r = dm_pool_commit_metadata(pool->pmd);
	if (r) {
		DMERR_LIMIT("%s: dm_pool_commit_metadata failed: error = %d",
			    dm_device_name(pool->pool_md), r);
906
		set_pool_mode(pool, PM_READ_ONLY);
907
	}
908
909
910
911

	return r;
}

912
913
914
915
916
917
918
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
{
	int r;
	dm_block_t free_blocks;
	unsigned long flags;
	struct pool *pool = tc->pool;

919
920
921
922
923
924
925
	/*
	 * Once no_free_space is set we must not allow allocation to succeed.
	 * Otherwise it is difficult to explain, debug, test and support.
	 */
	if (pool->no_free_space)
		return -ENOSPC;

926
927
928
	if (get_pool_mode(pool) != PM_WRITE)
		return -EINVAL;

929
930
931
932
933
	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
	if (r)
		return r;

	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
934
		DMWARN("%s: reached low water mark for data device: sending event.",
935
936
937
938
939
940
941
942
		       dm_device_name(pool->pool_md));
		spin_lock_irqsave(&pool->lock, flags);
		pool->low_water_triggered = 1;
		spin_unlock_irqrestore(&pool->lock, flags);
		dm_table_event(pool->ti->table);
	}

	if (!free_blocks) {
943
944
945
946
		/*
		 * Try to commit to see if that will free up some
		 * more space.
		 */
947
948
949
		r = commit(pool);
		if (r)
			return r;
950

951
952
953
		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
		if (r)
			return r;
954

955
956
957
958
959
960
961
962
		/*
		 * If we still have no space we set a flag to avoid
		 * doing all this checking and return -ENOSPC.  This
		 * flag serves as a latch that disallows allocations from
		 * this pool until the admin takes action (e.g. resize or
		 * table reload).
		 */
		if (!free_blocks) {
963
			DMWARN("%s: no free data space available.",
964
965
966
967
968
			       dm_device_name(pool->pool_md));
			spin_lock_irqsave(&pool->lock, flags);
			pool->no_free_space = 1;
			spin_unlock_irqrestore(&pool->lock, flags);
			return -ENOSPC;
969
970
971
972
		}
	}

	r = dm_pool_alloc_data_block(pool->pmd, result);
973
974
975
976
977
978
979
980
	if (r) {
		if (r == -ENOSPC &&
		    !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
		    !free_blocks) {
			DMWARN("%s: no free metadata space available.",
			       dm_device_name(pool->pool_md));
			set_pool_mode(pool, PM_READ_ONLY);
		}
981
		return r;
982
	}
983
984
985
986
987
988
989
990
991
992

	return 0;
}

/*
 * If we have run out of space, queue bios until the device is
 * resumed, presumably after having been reloaded with more space.
 */
static void retry_on_resume(struct bio *bio)
{
993
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
994
	struct thin_c *tc = h->tc;
995
996
997
998
999
1000
1001
1002
	struct pool *pool = tc->pool;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->retry_on_resume_list, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
}

1003
static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
1004
1005
1006
1007
1008
{
	struct bio *bio;
	struct bio_list bios;

	bio_list_init(&bios);
1009
	cell_release(pool, cell, &bios);
1010
1011
1012
1013
1014

	while ((bio = bio_list_pop(&bios)))
		retry_on_resume(bio);
}

Joe Thornber's avatar
Joe Thornber committed
1015
1016
1017
static void process_discard(struct thin_c *tc, struct bio *bio)
{
	int r;
1018
	unsigned long flags;
Joe Thornber's avatar
Joe Thornber committed
1019
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1020
	struct dm_bio_prison_cell *cell, *cell2;
1021
	struct dm_cell_key key, key2;
Joe Thornber's avatar
Joe Thornber committed
1022
1023
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;
Mike Snitzer's avatar
Mike Snitzer committed
1024
	struct dm_thin_new_mapping *m;
Joe Thornber's avatar
Joe Thornber committed
1025
1026

	build_virtual_key(tc->td, block, &key);
1027
	if (bio_detain(tc->pool, &key, bio, &cell))
Joe Thornber's avatar
Joe Thornber committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
		return;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		/*
		 * Check nobody is fiddling with this pool block.  This can
		 * happen if someone's in the process of breaking sharing
		 * on this block.
		 */
		build_data_key(tc->td, lookup_result.block, &key2);
1039
		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1040
			cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
			break;
		}

		if (io_overlaps_block(pool, bio)) {
			/*
			 * IO may still be going to the destination block.  We must
			 * quiesce before we can do the removal.
			 */
			m = get_next_mapping(pool);
			m->tc = tc;
1051
1052
			m->pass_discard = pool->pf.discard_passdown;
			m->definitely_not_shared = !lookup_result.shared;
Joe Thornber's avatar
Joe Thornber committed
1053
1054
1055
1056
1057
1058
			m->virt_block = block;
			m->data_block = lookup_result.block;
			m->cell = cell;
			m->cell2 = cell2;
			m->bio = bio;

1059
			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1060
				spin_lock_irqsave(&pool->lock, flags);
1061
				list_add_tail(&m->list, &pool->prepared_discards);
1062
				spin_unlock_irqrestore(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1063
1064
1065
				wake_worker(pool);
			}
		} else {
1066
			inc_all_io_entry(pool, bio);
1067
1068
			cell_defer_no_holder(tc, cell);
			cell_defer_no_holder(tc, cell2);
1069

Joe Thornber's avatar
Joe Thornber committed
1070
			/*
1071
1072
1073
			 * The DM core makes sure that the discard doesn't span
			 * a block boundary.  So we submit the discard of a
			 * partial block appropriately.
Joe Thornber's avatar
Joe Thornber committed
1074
			 */
1075
1076
1077
1078
			if ((!lookup_result.shared) && pool->pf.discard_passdown)
				remap_and_issue(tc, bio, lookup_result.block);
			else
				bio_endio(bio, 0);
Joe Thornber's avatar
Joe Thornber committed
1079
1080
1081
1082
1083
1084
1085
		}
		break;

	case -ENODATA:
		/*
		 * It isn't provisioned, just forget it.
		 */
1086
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1087
1088
1089
1090
		bio_endio(bio, 0);
		break;

	default:
1091
1092
		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
			    __func__, r);
1093
		cell_defer_no_holder(tc, cell);
Joe Thornber's avatar
Joe Thornber committed
1094
1095
1096
1097
1098
		bio_io_error(bio);
		break;
	}
}

1099
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1100
			  struct dm_cell_key *key,
1101
			  struct dm_thin_lookup_result *lookup_result,
Mike Snitzer's avatar
Mike Snitzer committed
1102
			  struct dm_bio_prison_cell *cell)
1103
1104
1105
{
	int r;
	dm_block_t data_block;
1106
	struct pool *pool = tc->pool;
1107
1108
1109
1110

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1111
1112
		schedule_internal_copy(tc, block, lookup_result->block,
				       data_block, cell, bio);
1113
1114
1115
		break;

	case -ENOSPC:
1116
		no_space(pool, cell);
1117
1118
1119
		break;

	default:
1120
1121
		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
			    __func__, r);
1122
1123
		set_pool_mode(pool, PM_READ_ONLY);
		cell_error(pool, cell);
1124
1125
1126
1127
1128
1129
1130
1131
		break;
	}
}

static void process_shared_bio(struct thin_c *tc, struct bio *bio,
			       dm_block_t block,
			       struct dm_thin_lookup_result *lookup_result)
{
Mike Snitzer's avatar
Mike Snitzer committed
1132
	struct dm_bio_prison_cell *cell;
1133
	struct pool *pool = tc->pool;
1134
	struct dm_cell_key key;
1135
1136
1137
1138
1139
1140

	/*
	 * If cell is already occupied, then sharing is already in the process
	 * of being broken so we have nothing further to do here.
	 */
	build_data_key(tc->td, lookup_result->block, &key);
1141
	if (bio_detain(pool, &key, bio, &cell))
1142
1143
		return;

1144
	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1145
1146
		break_sharing(tc, bio, block, &key, lookup_result, cell);
	else {
1147
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1148

1149
		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1150
		inc_all_io_entry(pool, bio);
1151
		cell_defer_no_holder(tc, cell);
1152

1153
1154
1155
1156
1157
		remap_and_issue(tc, bio, lookup_result->block);
	}
}

static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
Mike Snitzer's avatar
Mike Snitzer committed
1158
			    struct dm_bio_prison_cell *cell)
1159
1160
1161
{
	int r;
	dm_block_t data_block;
1162
	struct pool *pool = tc->pool;
1163
1164
1165
1166
1167

	/*
	 * Remap empty bios (flushes) immediately, without provisioning.
	 */
	if (!bio->bi_size) {
1168
		inc_all_io_entry(pool, bio);
1169
		cell_defer_no_holder(tc, cell);
1170

1171
1172
1173
1174
1175
1176
1177
1178
1179
		remap_and_issue(tc, bio, 0);
		return;
	}

	/*
	 * Fill read bios with zeroes and complete them immediately.
	 */
	if (bio_data_dir(bio) == READ) {
		zero_fill_bio(bio);
1180
		cell_defer_no_holder(tc, cell);
1181
1182
1183
1184
1185
1186
1187
		bio_endio(bio, 0);
		return;
	}

	r = alloc_data_block(tc, &data_block);
	switch (r) {
	case 0:
1188
1189
1190
1191
		if (tc->origin_dev)
			schedule_external_copy(tc, block, data_block, cell, bio);
		else
			schedule_zero(tc, block, data_block, cell, bio);
1192
1193
1194
		break;

	case -ENOSPC:
1195
		no_space(pool, cell);
1196
1197
1198
		break;

	default:
1199
1200
		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
			    __func__, r);
1201
1202
		set_pool_mode(pool, PM_READ_ONLY);
		cell_error(pool, cell);
1203
1204
1205
1206
1207
1208
1209
		break;
	}
}

static void process_bio(struct thin_c *tc, struct bio *bio)
{
	int r;
1210
	struct pool *pool = tc->pool;
1211
	dm_block_t block = get_bio_block(tc, bio);
Mike Snitzer's avatar
Mike Snitzer committed
1212
	struct dm_bio_prison_cell *cell;
1213
	struct dm_cell_key key;
1214
1215
1216
1217
1218
1219
1220
	struct dm_thin_lookup_result lookup_result;

	/*
	 * If cell is already occupied, then the block is already
	 * being provisioned so we have nothing further to do here.
	 */
	build_virtual_key(tc->td, block, &key);
1221
	if (bio_detain(pool, &key, bio, &cell))
1222
1223
1224
1225
1226
		return;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
1227
		if (lookup_result.shared) {
1228
			process_shared_bio(tc, bio, block, &lookup_result);
1229
			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230
		} else {
1231
			inc_all_io_entry(pool, bio);
1232
			cell_defer_no_holder(tc, cell);
1233

1234
			remap_and_issue(tc, bio, lookup_result.block);
1235
		}
1236
1237
1238
		break;

	case -ENODATA:
1239
		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240
			inc_all_io_entry(pool, bio);
1241
			cell_defer_no_holder(tc, cell);
1242

1243
1244
1245
			remap_to_origin_and_issue(tc, bio);
		} else
			provision_block(tc, bio, block, cell);
1246
1247
1248
		break;

	default:
1249
1250
		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
			    __func__, r);
1251
		cell_defer_no_holder(tc, cell);
1252
1253
1254
1255
1256
		bio_io_error(bio);
		break;
	}
}

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
{
	int r;
	int rw = bio_data_dir(bio);
	dm_block_t block = get_bio_block(tc, bio);
	struct dm_thin_lookup_result lookup_result;

	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
	switch (r) {
	case 0:
		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
			bio_io_error(bio);
1269
1270
		else {
			inc_all_io_entry(tc->pool, bio);
1271
			remap_and_issue(tc, bio, lookup_result.block);
1272
		}
1273
1274
1275
1276
1277
1278
1279
1280
1281
		break;

	case -ENODATA:
		if (rw != READ) {
			bio_io_error(bio);
			break;
		}

		if (tc->origin_dev) {
1282
			inc_all_io_entry(tc->pool, bio);
1283
1284
1285
1286
1287
1288
1289
1290
1291
			remap_to_origin_and_issue(tc, bio);
			break;
		}

		zero_fill_bio(bio);
		bio_endio(bio, 0);
		break;

	default:
1292
1293
		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
			    __func__, r);
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
		bio_io_error(bio);
		break;
	}
}

static void process_bio_fail(struct thin_c *tc, struct bio *bio)
{
	bio_io_error(bio);
}

1304
1305
1306
1307
/*
 * FIXME: should we also commit due to size of transaction, measured in
 * metadata blocks?
 */
1308
1309
1310
1311
1312
1313
static int need_commit_due_to_time(struct pool *pool)
{
	return jiffies < pool->last_commit_jiffies ||
	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
}

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
static void process_deferred_bios(struct pool *pool)
{
	unsigned long flags;
	struct bio *bio;
	struct bio_list bios;

	bio_list_init(&bios);

	spin_lock_irqsave(&pool->lock, flags);
	bio_list_merge(&bios, &pool->deferred_bios);
	bio_list_init(&pool->deferred_bios);
	spin_unlock_irqrestore(&pool->lock, flags);

	while ((bio = bio_list_pop(&bios))) {
1328
		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329
1330
		struct thin_c *tc = h->tc;

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
		/*
		 * If we've got no free new_mapping structs, and processing
		 * this bio might require one, we pause until there are some
		 * prepared mappings to process.
		 */
		if (ensure_next_mapping(pool)) {
			spin_lock_irqsave(&pool->lock, flags);
			bio_list_merge(&pool->deferred_bios, &bios);
			spin_unlock_irqrestore(&pool->lock, flags);

			break;
		}
Joe Thornber's avatar
Joe Thornber committed
1343
1344

		if (bio->bi_rw & REQ_DISCARD)
1345
			pool->process_discard(tc, bio);