rtd520.c 40.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
    comedi/drivers/rtd520.c
    Comedi driver for Real Time Devices (RTD) PCI4520/DM7520

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 2001 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: rtd520
Description: Real Time Devices PCI4520/DM7520
Author: Dan Christian
Devices: [Real Time Devices] DM7520HR-1 (rtd520), DM7520HR-8,
  PCI4520, PCI4520-8
Status: Works.  Only tested on DM7520-8.  Not SMP safe.

Configuration options:
  [0] - PCI bus of device (optional)
32
33
	If bus / slot is not specified, the first available PCI
	device will be used.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
  [1] - PCI slot of device (optional)
*/
/*
    Created by Dan Christian, NASA Ames Research Center.

    The PCI4520 is a PCI card.  The DM7520 is a PC/104-plus card.
    Both have:
    8/16 12 bit ADC with FIFO and channel gain table
    8 bits high speed digital out (for external MUX) (or 8 in or 8 out)
    8 bits high speed digital in with FIFO and interrupt on change (or 8 IO)
    2 12 bit DACs with FIFOs
    2 bits output
    2 bits input
    bus mastering DMA
    timers: ADC sample, pacer, burst, about, delay, DA1, DA2
    sample counter
    3 user timer/counters (8254)
    external interrupt

    The DM7520 has slightly fewer features (fewer gain steps).

    These boards can support external multiplexors and multi-board
    synchronization, but this driver doesn't support that.

    Board docs: http://www.rtdusa.com/PC104/DM/analog%20IO/dm7520.htm
    Data sheet: http://www.rtdusa.com/pdf/dm7520.pdf
    Example source: http://www.rtdusa.com/examples/dm/dm7520.zip
    Call them and ask for the register level manual.
62
    PCI chip: http://www.plxtech.com/products/io/pci9080
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    Notes:
    This board is memory mapped.  There is some IO stuff, but it isn't needed.

    I use a pretty loose naming style within the driver (rtd_blah).
    All externally visible names should be rtd520_blah.
    I use camelCase for structures (and inside them).
    I may also use upper CamelCase for function names (old habit).

    This board is somewhat related to the RTD PCI4400 board.

    I borrowed heavily from the ni_mio_common, ni_atmio16d, mite, and
    das1800, since they have the best documented code.  Driver
    cb_pcidas64.c uses the same DMA controller.

Lucas De Marchi's avatar
Lucas De Marchi committed
78
    As far as I can tell, the About interrupt doesn't work if Sample is
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    also enabled.  It turns out that About really isn't needed, since
    we always count down samples read.

    There was some timer/counter code, but it didn't follow the right API.

*/

/*
  driver status:

  Analog-In supports instruction and command mode.

  With DMA, you can sample at 1.15Mhz with 70% idle on a 400Mhz K6-2
  (single channel, 64K read buffer).  I get random system lockups when
  using DMA with ALI-15xx based systems.  I haven't been able to test
  any other chipsets.  The lockups happen soon after the start of an
  acquistion, not in the middle of a long run.

  Without DMA, you can do 620Khz sampling with 20% idle on a 400Mhz K6-2
  (with a 256K read buffer).

  Digital-IO and Analog-Out only support instruction mode.

*/

104
#include <linux/pci.h>
105
#include <linux/delay.h>
106
#include <linux/interrupt.h>
107
108
109

#include "../comedidev.h"

110
#include "comedi_fc.h"
111
112
#include "rtd520.h"
#include "plx9080.h"
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*======================================================================
  Driver specific stuff (tunable)
======================================================================*/

/* We really only need 2 buffers.  More than that means being much
   smarter about knowing which ones are full. */
#define DMA_CHAIN_COUNT 2	/* max DMA segments/buffers in a ring (min 2) */

/* Target period for periodic transfers.  This sets the user read latency. */
/* Note: There are certain rates where we give this up and transfer 1/2 FIFO */
/* If this is too low, efficiency is poor */
#define TRANS_TARGET_PERIOD 10000000	/* 10 ms (in nanoseconds) */

/* Set a practical limit on how long a list to support (affects memory use) */
/* The board support a channel list up to the FIFO length (1K or 8K) */
#define RTD_MAX_CHANLIST	128	/* max channel list that we allow */

/* tuning for ai/ao instruction done polling */
#ifdef FAST_SPIN
#define WAIT_QUIETLY		/* as nothing, spin on done bit */
#define RTD_ADC_TIMEOUT	66000	/* 2 msec at 33mhz bus rate */
#define RTD_DAC_TIMEOUT	66000
#define RTD_DMA_TIMEOUT	33000	/* 1 msec */
#else
/* by delaying, power and electrical noise are reduced somewhat */
139
#define WAIT_QUIETLY	udelay(1)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#define RTD_ADC_TIMEOUT	2000	/* in usec */
#define RTD_DAC_TIMEOUT	2000	/* in usec */
#define RTD_DMA_TIMEOUT	1000	/* in usec */
#endif

/*======================================================================
  Board specific stuff
======================================================================*/

#define RTD_CLOCK_RATE	8000000	/* 8Mhz onboard clock */
#define RTD_CLOCK_BASE	125	/* clock period in ns */

/* Note: these speed are slower than the spec, but fit the counter resolution*/
#define RTD_MAX_SPEED	1625	/* when sampling, in nanoseconds */
/* max speed if we don't have to wait for settling */
#define RTD_MAX_SPEED_1	875	/* if single channel, in nanoseconds */

#define RTD_MIN_SPEED	2097151875	/* (24bit counter) in nanoseconds */
/* min speed when only 1 channel (no burst counter) */
#define RTD_MIN_SPEED_1	5000000	/* 200Hz, in nanoseconds */

/* Setup continuous ring of 1/2 FIFO transfers.  See RTD manual p91 */
#define DMA_MODE_BITS (\
		       PLX_LOCAL_BUS_16_WIDE_BITS \
		       | PLX_DMA_EN_READYIN_BIT \
		       | PLX_DMA_LOCAL_BURST_EN_BIT \
		       | PLX_EN_CHAIN_BIT \
		       | PLX_DMA_INTR_PCI_BIT \
		       | PLX_LOCAL_ADDR_CONST_BIT \
		       | PLX_DEMAND_MODE_BIT)

#define DMA_TRANSFER_BITS (\
172
/* descriptors in PCI memory*/  PLX_DESC_IN_PCI_BIT \
173
174
175
176
177
178
179
180
/* interrupt at end of block */ | PLX_INTR_TERM_COUNT \
/* from board to PCI */		| PLX_XFER_LOCAL_TO_PCI)

/*======================================================================
  Comedi specific stuff
======================================================================*/

/*
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
 * The board has 3 input modes and the gains of 1,2,4,...32 (, 64, 128)
 */
static const struct comedi_lrange rtd_ai_7520_range = {
	18, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
	}
207
208
209
};

/* PCI4520 has two more gains (6 more entries) */
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
static const struct comedi_lrange rtd_ai_4520_range = {
	24, {
		/* +-5V input range gain steps */
		BIP_RANGE(5.0),
		BIP_RANGE(5.0 / 2),
		BIP_RANGE(5.0 / 4),
		BIP_RANGE(5.0 / 8),
		BIP_RANGE(5.0 / 16),
		BIP_RANGE(5.0 / 32),
		BIP_RANGE(5.0 / 64),
		BIP_RANGE(5.0 / 128),
		/* +-10V input range gain steps */
		BIP_RANGE(10.0),
		BIP_RANGE(10.0 / 2),
		BIP_RANGE(10.0 / 4),
		BIP_RANGE(10.0 / 8),
		BIP_RANGE(10.0 / 16),
		BIP_RANGE(10.0 / 32),
		BIP_RANGE(10.0 / 64),
		BIP_RANGE(10.0 / 128),
		/* +10V input range gain steps */
		UNI_RANGE(10.0),
		UNI_RANGE(10.0 / 2),
		UNI_RANGE(10.0 / 4),
		UNI_RANGE(10.0 / 8),
		UNI_RANGE(10.0 / 16),
		UNI_RANGE(10.0 / 32),
		UNI_RANGE(10.0 / 64),
		UNI_RANGE(10.0 / 128),
	}
240
241
242
};

/* Table order matches range values */
243
244
245
246
247
248
249
static const struct comedi_lrange rtd_ao_range = {
	4, {
		UNI_RANGE(5),
		UNI_RANGE(10),
		BIP_RANGE(5),
		BIP_RANGE(10),
	}
250
251
};

252
253
254
255
256
enum rtd_boardid {
	BOARD_DM7520,
	BOARD_PCI4520,
};

257
struct rtdBoard {
258
	const char *name;
259
260
	int range10Start;	/* start of +-10V range */
	int rangeUniStart;	/* start of +10V range */
261
	const struct comedi_lrange *ai_range;
262
};
263

264
static const struct rtdBoard rtd520Boards[] = {
265
	[BOARD_DM7520] = {
266
267
268
		.name		= "DM7520",
		.range10Start	= 6,
		.rangeUniStart	= 12,
269
		.ai_range	= &rtd_ai_7520_range,
270
271
	},
	[BOARD_PCI4520] = {
272
273
274
		.name		= "PCI4520",
		.range10Start	= 8,
		.rangeUniStart	= 16,
275
		.ai_range	= &rtd_ai_4520_range,
276
	},
277
278
279
280
281
282
};

/*
   This structure is for data unique to this hardware driver.
   This is also unique for each board in the system.
*/
283
struct rtdPrivate {
284
	/* memory mapped board structures */
285
286
287
	void __iomem *las0;
	void __iomem *las1;
	void __iomem *lcfg;
288
289

	long aiCount;		/* total transfer size (samples) */
290
	int transCount;		/* # to transfer data. 0->1/2FIFO */
291
292
293
294
295
296
297
	int flags;		/* flag event modes */

	/* channel list info */
	/* chanBipolar tracks whether a channel is bipolar (and needs +2048) */
	unsigned char chanBipolar[RTD_MAX_CHANLIST / 8];	/* bit array */

	/* read back data */
298
	unsigned int aoValue[2];	/* Used for AO read back */
299
300
301
302

	/* timer gate (when enabled) */
	u8 utcGate[4];		/* 1 extra allows simple range check */

Lucas De Marchi's avatar
Lucas De Marchi committed
303
	/* shadow registers affect other registers, but can't be read back */
304
305
306
307
308
309
	/* The macros below update these on writes */
	u16 intMask;		/* interrupt mask */
	u16 intClearMask;	/* interrupt clear mask */
	u8 utcCtrl[4];		/* crtl mode for 3 utc + read back */
	u8 dioStatus;		/* could be read back (dio0Ctrl) */
	unsigned fifoLen;
310
};
311
312
313
314
315
316
317

/* bit defines for "flags" */
#define SEND_EOS	0x01	/* send End Of Scan events */
#define DMA0_ACTIVE	0x02	/* DMA0 is active */
#define DMA1_ACTIVE	0x04	/* DMA1 is active */

/* Macros for accessing channel list bit array */
318
#define CHAN_ARRAY_TEST(array, index) \
319
	(((array)[(index)/8] >> ((index) & 0x7)) & 0x1)
320
#define CHAN_ARRAY_SET(array, index) \
321
	(((array)[(index)/8] |= 1 << ((index) & 0x7)))
322
#define CHAN_ARRAY_CLEAR(array, index) \
323
324
	(((array)[(index)/8] &= ~(1 << ((index) & 0x7))))

325
/*
326
327
328
329
330
  Given a desired period and the clock period (both in ns),
  return the proper counter value (divider-1).
  Sets the original period to be the true value.
  Note: you have to check if the value is larger than the counter range!
*/
331
static int rtd_ns_to_timer_base(unsigned int *nanosec,
332
				int round_mode, int base)
333
{
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
	int divider;

	switch (round_mode) {
	case TRIG_ROUND_NEAREST:
	default:
		divider = (*nanosec + base / 2) / base;
		break;
	case TRIG_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case TRIG_ROUND_UP:
		divider = (*nanosec + base - 1) / base;
		break;
	}
	if (divider < 2)
		divider = 2;	/* min is divide by 2 */

	/* Note: we don't check for max, because different timers
	   have different ranges */

	*nanosec = base * divider;
	return divider - 1;	/* countdown is divisor+1 */
}
357
358

/*
359
360
361
362
363
364
365
366
  Given a desired period (in ns),
  return the proper counter value (divider-1) for the internal clock.
  Sets the original period to be the true value.
*/
static int rtd_ns_to_timer(unsigned int *ns, int round_mode)
{
	return rtd_ns_to_timer_base(ns, round_mode, RTD_CLOCK_BASE);
}
367

368
369
370
371
372
373
/*
  Convert a single comedi channel-gain entry to a RTD520 table entry
*/
static unsigned short rtdConvertChanGain(struct comedi_device *dev,
					 unsigned int comediChan, int chanIndex)
{				/* index in channel list */
374
	const struct rtdBoard *thisboard = comedi_board(dev);
375
	struct rtdPrivate *devpriv = dev->private;
376
377
	unsigned int chan, range, aref;
	unsigned short r = 0;
378

379
380
381
	chan = CR_CHAN(comediChan);
	range = CR_RANGE(comediChan);
	aref = CR_AREF(comediChan);
382

383
	r |= chan & 0xf;
384

385
	/* Note: we also setup the channel list bipolar flag array */
386
387
388
389
	if (range < thisboard->range10Start) {
		/* +-5 range */
		r |= 0x000;
		r |= (range & 0x7) << 4;
390
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
391
392
393
	} else if (range < thisboard->rangeUniStart) {
		/* +-10 range */
		r |= 0x100;
394
395
		r |= ((range - thisboard->range10Start) & 0x7) << 4;
		CHAN_ARRAY_SET(devpriv->chanBipolar, chanIndex);
396
397
398
	} else {
		/* +10 range */
		r |= 0x200;
399
400
401
		r |= ((range - thisboard->rangeUniStart) & 0x7) << 4;
		CHAN_ARRAY_CLEAR(devpriv->chanBipolar, chanIndex);
	}
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
	switch (aref) {
	case AREF_GROUND:	/* on-board ground */
		break;

	case AREF_COMMON:
		r |= 0x80;	/* ref external analog common */
		break;

	case AREF_DIFF:
		r |= 0x400;	/* differential inputs */
		break;

	case AREF_OTHER:	/* ??? */
		break;
	}
	/*printk ("chan=%d r=%d a=%d -> 0x%x\n",
	   chan, range, aref, r); */
	return r;
}

/*
  Setup the channel-gain table from a comedi list
*/
static void rtd_load_channelgain_list(struct comedi_device *dev,
				      unsigned int n_chan, unsigned int *list)
{
429
430
	struct rtdPrivate *devpriv = dev->private;

431
432
	if (n_chan > 1) {	/* setup channel gain table */
		int ii;
433
434

		writel(0, devpriv->las0 + LAS0_CGT_CLEAR);
435
		writel(1, devpriv->las0 + LAS0_CGT_ENABLE);
436
		for (ii = 0; ii < n_chan; ii++) {
437
438
			writel(rtdConvertChanGain(dev, list[ii], ii),
				devpriv->las0 + LAS0_CGT_WRITE);
439
		}
440
	} else {		/* just use the channel gain latch */
441
		writel(0, devpriv->las0 + LAS0_CGT_ENABLE);
442
443
		writel(rtdConvertChanGain(dev, list[0], 0),
			devpriv->las0 + LAS0_CGL_WRITE);
444
	}
445
446
447
448
449
450
}

/* determine fifo size by doing adc conversions until the fifo half
empty status flag clears */
static int rtd520_probe_fifo_depth(struct comedi_device *dev)
{
451
	struct rtdPrivate *devpriv = dev->private;
452
453
454
455
456
	unsigned int chanspec = CR_PACK(0, 0, AREF_GROUND);
	unsigned i;
	static const unsigned limit = 0x2000;
	unsigned fifo_size = 0;

457
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
458
	rtd_load_channelgain_list(dev, 1, &chanspec);
459
	/* ADC conversion trigger source: SOFTWARE */
460
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
461
462
463
464
	/* convert  samples */
	for (i = 0; i < limit; ++i) {
		unsigned fifo_status;
		/* trigger conversion */
465
		writew(0, devpriv->las0 + LAS0_ADC);
466
		udelay(1);
467
		fifo_status = readl(devpriv->las0 + LAS0_ADC);
468
469
470
		if ((fifo_status & FS_ADC_HEMPTY) == 0) {
			fifo_size = 2 * i;
			break;
471
		}
472
473
	}
	if (i == limit) {
474
		dev_info(dev->class_dev, "failed to probe fifo size.\n");
475
476
		return -EIO;
	}
477
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
478
	if (fifo_size != 0x400 && fifo_size != 0x2000) {
479
480
481
		dev_info(dev->class_dev,
			 "unexpected fifo size of %i, expected 1024 or 8192.\n",
			 fifo_size);
482
		return -EIO;
483
	}
484
485
	return fifo_size;
}
486

487
488
489
490
/*
  "instructions" read/write data in "one-shot" or "software-triggered"
  mode (simplest case).
  This doesn't use interrupts.
491

492
493
494
495
496
497
498
  Note, we don't do any settling delays.  Use a instruction list to
  select, delay, then read.
 */
static int rtd_ai_rinsn(struct comedi_device *dev,
			struct comedi_subdevice *s, struct comedi_insn *insn,
			unsigned int *data)
{
499
	struct rtdPrivate *devpriv = dev->private;
500
501
	int n, ii;
	int stat;
502

503
	/* clear any old fifo data */
504
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
505

506
507
	/* write channel to multiplexer and clear channel gain table */
	rtd_load_channelgain_list(dev, 1, &insn->chanspec);
508

509
	/* ADC conversion trigger source: SOFTWARE */
510
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
511

512
513
514
515
	/* convert n samples */
	for (n = 0; n < insn->n; n++) {
		s16 d;
		/* trigger conversion */
516
		writew(0, devpriv->las0 + LAS0_ADC);
517
518

		for (ii = 0; ii < RTD_ADC_TIMEOUT; ++ii) {
519
			stat = readl(devpriv->las0 + LAS0_ADC);
520
521
522
523
			if (stat & FS_ADC_NOT_EMPTY)	/* 1 -> not empty */
				break;
			WAIT_QUIETLY;
		}
524
		if (ii >= RTD_ADC_TIMEOUT)
525
526
527
			return -ETIMEDOUT;

		/* read data */
528
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
529
530
531
532
533
534
535
		/*printk ("rtd520: Got 0x%x after %d usec\n", d, ii+1); */
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, 0))
			/* convert to comedi unsigned data */
			data[n] = d + 2048;
		else
			data[n] = d;
536
537
	}

538
539
540
	/* return the number of samples read/written */
	return n;
}
541

542
543
544
/*
  Get what we know is there.... Fast!
  This uses 1/2 the bus cycles of read_dregs (below).
545

546
547
548
549
550
  The manual claims that we can do a lword read, but it doesn't work here.
*/
static int ai_read_n(struct comedi_device *dev, struct comedi_subdevice *s,
		     int count)
{
551
	struct rtdPrivate *devpriv = dev->private;
552
	int ii;
553

554
555
556
	for (ii = 0; ii < count; ii++) {
		short sample;
		s16 d;
557

558
		if (0 == devpriv->aiCount) {	/* done */
559
			d = readw(devpriv->las1 + LAS1_ADC_FIFO);
560
561
			continue;
		}
562

563
		d = readw(devpriv->las1 + LAS1_ADC_FIFO);
564
565
566
567
568
569
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
570

571
572
		if (!comedi_buf_put(s->async, sample))
			return -1;
573

574
575
576
577
578
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
579

580
581
582
583
584
/*
  unknown amout of data is waiting in fifo.
*/
static int ai_read_dregs(struct comedi_device *dev, struct comedi_subdevice *s)
{
585
586
	struct rtdPrivate *devpriv = dev->private;

587
	while (readl(devpriv->las0 + LAS0_ADC) & FS_ADC_NOT_EMPTY) {
588
		short sample;
589
		s16 d = readw(devpriv->las1 + LAS1_ADC_FIFO);
590

591
592
593
		if (0 == devpriv->aiCount) {	/* done */
			continue;	/* read rest */
		}
594

595
596
597
598
599
600
		d = d >> 3;	/* low 3 bits are marker lines */
		if (CHAN_ARRAY_TEST(devpriv->chanBipolar, s->async->cur_chan)) {
			/* convert to comedi unsigned data */
			sample = d + 2048;
		} else
			sample = d;
601

602
603
		if (!comedi_buf_put(s->async, sample))
			return -1;
604

605
606
607
608
609
		if (devpriv->aiCount > 0)	/* < 0, means read forever */
			devpriv->aiCount--;
	}
	return 0;
}
610

611
612
613
614
615
616
617
618
619
/*
  Handle all rtd520 interrupts.
  Runs atomically and is never re-entered.
  This is a "slow handler";  other interrupts may be active.
  The data conversion may someday happen in a "bottom half".
*/
static irqreturn_t rtd_interrupt(int irq,	/* interrupt number (ignored) */
				 void *d)
{				/* our data *//* cpu context (ignored) */
620
	struct comedi_device *dev = d;
621
	struct comedi_subdevice *s = &dev->subdevices[0];
622
	struct rtdPrivate *devpriv = dev->private;
623
	u32 overrun;
624
625
	u16 status;
	u16 fifoStatus;
626

627
628
	if (!dev->attached)
		return IRQ_NONE;
629

630
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
631
	/* check for FIFO full, this automatically halts the ADC! */
632
	if (!(fifoStatus & FS_ADC_NOT_FULL))	/* 0 -> full */
633
634
		goto abortTransfer;

635
	status = readw(devpriv->las0 + LAS0_IT);
636
637
638
639
640
	/* if interrupt was not caused by our board, or handled above */
	if (0 == status)
		return IRQ_HANDLED;

	if (status & IRQM_ADC_ABOUT_CNT) {	/* sample count -> read FIFO */
641
642
643
644
645
646
647
648
		/*
		 * since the priority interrupt controller may have queued
		 * a sample counter interrupt, even though we have already
		 * finished, we must handle the possibility that there is
		 * no data here
		 */
		if (!(fifoStatus & FS_ADC_HEMPTY)) {
			/* FIFO half full */
649
			if (ai_read_n(dev, s, devpriv->fifoLen / 2) < 0)
650
				goto abortTransfer;
651
652

			if (0 == devpriv->aiCount)
653
				goto transferDone;
654

655
			comedi_event(dev, s);
656
657
658
		} else if (devpriv->transCount > 0) {
			if (fifoStatus & FS_ADC_NOT_EMPTY) {
				/* FIFO not empty */
659
				if (ai_read_n(dev, s, devpriv->transCount) < 0)
660
					goto abortTransfer;
661
662

				if (0 == devpriv->aiCount)
663
					goto transferDone;
664

665
666
				comedi_event(dev, s);
			}
667
668
669
		}
	}

670
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
671
	if (overrun)
672
		goto abortTransfer;
673

674
	/* clear the interrupt */
675
676
	devpriv->intClearMask = status;
	writew(devpriv->intClearMask, devpriv->las0 + LAS0_CLEAR);
677
	readw(devpriv->las0 + LAS0_CLEAR);
678
	return IRQ_HANDLED;
679

680
abortTransfer:
681
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
682
683
684
	s->async->events |= COMEDI_CB_ERROR;
	devpriv->aiCount = 0;	/* stop and don't transfer any more */
	/* fall into transferDone */
685

686
transferDone:
687
	/* pacer stop source: SOFTWARE */
688
	writel(0, devpriv->las0 + LAS0_PACER_STOP);
689
	writel(0, devpriv->las0 + LAS0_PACER);	/* stop pacer */
690
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
691
692
	devpriv->intMask = 0;
	writew(devpriv->intMask, devpriv->las0 + LAS0_IT);
693

694
	if (devpriv->aiCount > 0) {	/* there shouldn't be anything left */
695
		fifoStatus = readl(devpriv->las0 + LAS0_ADC);
696
697
		ai_read_dregs(dev, s);	/* read anything left in FIFO */
	}
698

699
700
	s->async->events |= COMEDI_CB_EOA;	/* signal end to comedi */
	comedi_event(dev, s);
701

702
	/* clear the interrupt */
703
	status = readw(devpriv->las0 + LAS0_IT);
704
705
	devpriv->intClearMask = status;
	writew(devpriv->intClearMask, devpriv->las0 + LAS0_CLEAR);
706
	readw(devpriv->las0 + LAS0_CLEAR);
707

708
	fifoStatus = readl(devpriv->las0 + LAS0_ADC);
709
	overrun = readl(devpriv->las0 + LAS0_OVERRUN) & 0xffff;
710
711

	return IRQ_HANDLED;
712
713
}

714
715
716
/*
  cmdtest tests a particular command to see if it is valid.
  Using the cmdtest ioctl, a user can create a valid cmd
717
  and then have it executed by the cmd ioctl (asynchronously).
718
719
720
721
722
723
724

  cmdtest returns 1,2,3,4 or 0, depending on which tests
  the command passes.
*/

static int rtd_ai_cmdtest(struct comedi_device *dev,
			  struct comedi_subdevice *s, struct comedi_cmd *cmd)
725
{
726
727
	int err = 0;
	int tmp;
728

729
	/* Step 1 : check if triggers are trivially valid */
730

731
732
733
734
735
736
	err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER | TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
737
738
739
740

	if (err)
		return 1;

741
	/* Step 2a : make sure trigger sources are unique */
742

743
744
745
746
747
	err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
	err |= cfc_check_trigger_is_unique(cmd->convert_src);
	err |= cfc_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */
748

749
750
	if (err)
		return 2;
751

752
	/* Step 3: check if arguments are trivially valid */
753

754
	err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
755

756
757
758
	if (cmd->scan_begin_src == TRIG_TIMER) {
		/* Note: these are time periods, not actual rates */
		if (1 == cmd->chanlist_len) {	/* no scanning */
759
760
			if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
						      RTD_MAX_SPEED_1)) {
761
762
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_UP);
763
				err |= -EINVAL;
764
			}
765
766
			if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
						      RTD_MIN_SPEED_1)) {
767
768
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_DOWN);
769
				err |= -EINVAL;
770
771
			}
		} else {
772
773
			if (cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
						      RTD_MAX_SPEED)) {
774
775
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_UP);
776
				err |= -EINVAL;
777
			}
778
779
			if (cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
						      RTD_MIN_SPEED)) {
780
781
				rtd_ns_to_timer(&cmd->scan_begin_arg,
						TRIG_ROUND_DOWN);
782
				err |= -EINVAL;
783
			}
784
		}
785
786
787
788
	} else {
		/* external trigger */
		/* should be level/edge, hi/lo specification here */
		/* should specify multiple external triggers */
789
		err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
790
	}
791

792
793
	if (cmd->convert_src == TRIG_TIMER) {
		if (1 == cmd->chanlist_len) {	/* no scanning */
794
795
			if (cfc_check_trigger_arg_min(&cmd->convert_arg,
						      RTD_MAX_SPEED_1)) {
796
797
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_UP);
798
				err |= -EINVAL;
799
			}
800
801
			if (cfc_check_trigger_arg_max(&cmd->convert_arg,
						      RTD_MIN_SPEED_1)) {
802
803
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_DOWN);
804
				err |= -EINVAL;
805
806
			}
		} else {
807
808
			if (cfc_check_trigger_arg_min(&cmd->convert_arg,
						      RTD_MAX_SPEED)) {
809
810
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_UP);
811
				err |= -EINVAL;
812
			}
813
814
			if (cfc_check_trigger_arg_max(&cmd->convert_arg,
						      RTD_MIN_SPEED)) {
815
816
				rtd_ns_to_timer(&cmd->convert_arg,
						TRIG_ROUND_DOWN);
817
				err |= -EINVAL;
818
819
820
821
822
			}
		}
	} else {
		/* external trigger */
		/* see above */
823
		err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 9);
824
825
826
827
828
829
	}

	if (cmd->stop_src == TRIG_COUNT) {
		/* TODO check for rounding error due to counter wrap */
	} else {
		/* TRIG_NONE */
830
		err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
831
	}
832

833
834
	if (err)
		return 3;
835

836
837
838
839
840
841

	/* step 4: fix up any arguments */

	if (cmd->chanlist_len > RTD_MAX_CHANLIST) {
		cmd->chanlist_len = RTD_MAX_CHANLIST;
		err++;
842
	}
843
844
845
846
847
848
	if (cmd->scan_begin_src == TRIG_TIMER) {
		tmp = cmd->scan_begin_arg;
		rtd_ns_to_timer(&cmd->scan_begin_arg,
				cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->scan_begin_arg)
			err++;
849

850
851
852
853
854
855
856
	}
	if (cmd->convert_src == TRIG_TIMER) {
		tmp = cmd->convert_arg;
		rtd_ns_to_timer(&cmd->convert_arg,
				cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->convert_arg)
			err++;
857

858
859
860
861
862
863
		if (cmd->scan_begin_src == TRIG_TIMER
		    && (cmd->scan_begin_arg
			< (cmd->convert_arg * cmd->scan_end_arg))) {
			cmd->scan_begin_arg =
			    cmd->convert_arg * cmd->scan_end_arg;
			err++;
864
		}
865
	}
866

867
868
	if (err)
		return 4;
869
870
871
872
873

	return 0;
}

/*
874
875
876
877
  Execute a analog in command with many possible triggering options.
  The data get stored in the async structure of the subdevice.
  This is usually done by an interrupt handler.
  Userland gets to the data using read calls.
878
*/
879
880
static int rtd_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
881
	struct rtdPrivate *devpriv = dev->private;
882
883
	struct comedi_cmd *cmd = &s->async->cmd;
	int timer;
884

885
	/* stop anything currently running */
886
	/* pacer stop source: SOFTWARE */
887
	writel(0, devpriv->las0 + LAS0_PACER_STOP);
888
	writel(0, devpriv->las0 + LAS0_PACER);	/* stop pacer */
889
	writel(0, devpriv->las0 + LAS0_ADC_CONVERSION);
890
891
	devpriv->intMask = 0;
	writew(devpriv->intMask, devpriv->las0 + LAS0_IT);
892
	writel(0, devpriv->las0 + LAS0_ADC_FIFO_CLEAR);
893
	writel(0, devpriv->las0 + LAS0_OVERRUN);
894

895
896
897
	/* start configuration */
	/* load channel list and reset CGT */
	rtd_load_channelgain_list(dev, cmd->chanlist_len, cmd->chanlist);
898

899
900
	/* setup the common case and override if needed */
	if (cmd->chanlist_len > 1) {
901
		/* pacer start source: SOFTWARE */
902
		writel(0, devpriv->las0 + LAS0_PACER_START);
903
		/* burst trigger source: PACER */
904
		writel(1, devpriv->las0 + LAS0_BURST_START);
905
		/* ADC conversion trigger source: BURST */
906
		writel(2, devpriv->las0 + LAS0_ADC_CONVERSION);
907
	} else {		/* single channel */
908
		/* pacer start source: SOFTWARE */
909
		writel(0, devpriv->las0 + LAS0_PACER_START);
910
		/* ADC conversion trigger source: PACER */
911
		writel(1, devpriv->las0 + LAS0_ADC_CONVERSION);
912
	}
913
	writel((devpriv->fifoLen / 2 - 1) & 0xffff, devpriv->las0 + LAS0_ACNT);
914
915
916
917
918

	if (TRIG_TIMER == cmd->scan_begin_src) {
		/* scan_begin_arg is in nanoseconds */
		/* find out how many samples to wait before transferring */
		if (cmd->flags & TRIG_WAKE_EOS) {
919
920
921
922
923
			/*
			 * this may generate un-sustainable interrupt rates
			 * the application is responsible for doing the
			 * right thing
			 */
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
			devpriv->transCount = cmd->chanlist_len;
			devpriv->flags |= SEND_EOS;
		} else {
			/* arrange to transfer data periodically */
			devpriv->transCount
			    =
			    (TRANS_TARGET_PERIOD * cmd->chanlist_len) /
			    cmd->scan_begin_arg;
			if (devpriv->transCount < cmd->chanlist_len) {
				/* transfer after each scan (and avoid 0) */
				devpriv->transCount = cmd->chanlist_len;
			} else {	/* make a multiple of scan length */
				devpriv->transCount =
				    (devpriv->transCount +
				     cmd->chanlist_len - 1)
				    / cmd->chanlist_len;
				devpriv->transCount *= cmd->chanlist_len;
			}
			devpriv->flags |= SEND_EOS;
		}
		if (devpriv->transCount >= (devpriv->fifoLen / 2)) {
			/* out of counter range, use 1/2 fifo instead */
			devpriv->transCount = 0;
			devpriv->flags &= ~SEND_EOS;
		} else {
			/* interrupt for each transfer */
950
951
			writel((devpriv->transCount - 1) & 0xffff,
				devpriv->las0 + LAS0_ACNT);
952
953
954
955
		}
	} else {		/* unknown timing, just use 1/2 FIFO */
		devpriv->transCount = 0;
		devpriv->flags &= ~SEND_EOS;
956
	}
957
	/* pacer clock source: INTERNAL 8MHz */
958
	writel(1, devpriv->las0 + LAS0_PACER_SELECT);
959
	/* just interrupt, don't stop */
960
	writel(1, devpriv->las0 + LAS0_ACNT_STOP_ENABLE);
961

962
	/* BUG??? these look like enumerated values, but they are bit fields */
963

964
965
966
967
968
969
970
971
972
	/* First, setup when to stop */
	switch (cmd->stop_src) {
	case TRIG_COUNT:	/* stop after N scans */
		devpriv->aiCount = cmd->stop_arg * cmd->chanlist_len;
		if ((devpriv->transCount > 0)
		    && (devpriv->transCount > devpriv->aiCount)) {
			devpriv->transCount = devpriv->aiCount;
		}
		break;
973

974
975
976
977
978
979
980
981
982
983
984
	case TRIG_NONE:	/* stop when cancel is called */
		devpriv->aiCount = -1;	/* read forever */
		break;
	}

	/* Scan timing */
	switch (cmd->scan_begin_src) {
	case TRIG_TIMER:	/* periodic scanning */
		timer = rtd_ns_to_timer(&cmd->scan_begin_arg,
					TRIG_ROUND_NEAREST);
		/* set PACER clock */
985
		writel(timer & 0xffffff, devpriv->las0 + LAS0_PCLK);
986

987
		break;
988

989
	case TRIG_EXT:
990
		/* pacer start source: EXTERNAL */
991
		writel(1, devpriv->las0 + LAS0_PACER_START);
992
993
		break;
	}
994

995
996
997
	/* Sample timing within a scan */
	switch (cmd->convert_src) {
	case TRIG_TIMER:	/* periodic */
998
999
		if (cmd->chanlist_len > 1) {
			/* only needed for multi-channel */
1000
			timer = rtd_ns_to_timer(&cmd->convert_arg,
For faster browsing, not all history is shown. View entire blame