s626.c 91.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/*
  comedi/drivers/s626.c
  Sensoray s626 Comedi driver

  COMEDI - Linux Control and Measurement Device Interface
  Copyright (C) 2000 David A. Schleef <ds@schleef.org>

  Based on Sensoray Model 626 Linux driver Version 0.2
  Copyright (C) 2002-2004 Sensoray Co., Inc.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

/*
Driver: s626
Description: Sensoray 626 driver
Devices: [Sensoray] 626 (s626)
Authors: Gianluca Palli <gpalli@deis.unibo.it>,
Updated: Fri, 15 Feb 2008 10:28:42 +0000
Status: experimental

35
Configuration options: not applicable, uses PCI auto config
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

INSN_CONFIG instructions:
  analog input:
   none

  analog output:
   none

  digital channel:
   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
   supported configuration options:
   INSN_CONFIG_DIO_QUERY
   COMEDI_INPUT
   COMEDI_OUTPUT

  encoder:
   Every channel must be configured before reading.

   Example code

   insn.insn=INSN_CONFIG;   //configuration instruction
   insn.n=1;                //number of operation (must be 1)
   insn.data=&initialvalue; //initial value loaded into encoder
59
				//during configuration
60
61
   insn.subdev=5;           //encoder subdevice
   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
62
							//to configure
63
64
65
66

   comedi_do_insn(cf,&insn); //executing configuration
*/

67
#include <linux/interrupt.h>
68
69
70
71
72
73
74
75
#include <linux/kernel.h>
#include <linux/types.h>

#include "../comedidev.h"

#include "comedi_fc.h"
#include "s626.h"

76
77
78
79
80
#define PCI_VENDOR_ID_S626 0x1131
#define PCI_DEVICE_ID_S626 0x7146
#define PCI_SUBVENDOR_ID_S626 0x6000
#define PCI_SUBDEVICE_ID_S626 0x0272

81
struct s626_private {
82
	void __iomem *base_addr;
83
84
	int got_regions;
	short allocatedBuf;
85
	uint8_t ai_cmd_running;	/*  ai_cmd is running */
Lucas De Marchi's avatar
Lucas De Marchi committed
86
	uint8_t ai_continous;	/*  continous acquisition */
87
	int ai_sample_count;	/*  number of samples to acquire */
88
89
90
91
92
93
94
95
	unsigned int ai_sample_timer;
	/*  time between samples in  units of the timer */
	int ai_convert_count;	/*  conversion counter */
	unsigned int ai_convert_timer;
	/*  time between conversion in  units of the timer */
	uint16_t CounterIntEnabs;
	/* Counter interrupt enable  mask for MISC2 register. */
	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
96
	struct bufferDMA RPSBuf;	/* DMA buffer used to hold ADC (RPS1) program. */
97
	struct bufferDMA ANABuf;
98
99
100
101
102
103
104
105
106
107
108
	/* DMA buffer used to receive ADC data and hold DAC data. */
	uint32_t *pDacWBuf;
	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
	uint16_t Dacpol;	/* Image of DAC polarity register. */
	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
	uint32_t I2CAdrs;
	/* I2C device address for onboard EEPROM (board rev dependent). */
	/*   short         I2Cards; */
109
	unsigned int ao_readback[S626_DAC_CHANNELS];
110
};
111

112
struct dio_private {
113
114
115
116
117
118
119
120
121
	uint16_t RDDIn;
	uint16_t WRDOut;
	uint16_t RDEdgSel;
	uint16_t WREdgSel;
	uint16_t RDCapSel;
	uint16_t WRCapSel;
	uint16_t RDCapFlg;
	uint16_t RDIntSel;
	uint16_t WRIntSel;
122
};
123

124
static struct dio_private dio_private_A = {
125
126
127
128
129
130
131
132
133
	.RDDIn = LP_RDDINA,
	.WRDOut = LP_WRDOUTA,
	.RDEdgSel = LP_RDEDGSELA,
	.WREdgSel = LP_WREDGSELA,
	.RDCapSel = LP_RDCAPSELA,
	.WRCapSel = LP_WRCAPSELA,
	.RDCapFlg = LP_RDCAPFLGA,
	.RDIntSel = LP_RDINTSELA,
	.WRIntSel = LP_WRINTSELA,
134
135
};

136
static struct dio_private dio_private_B = {
137
138
139
140
141
142
143
144
145
	.RDDIn = LP_RDDINB,
	.WRDOut = LP_WRDOUTB,
	.RDEdgSel = LP_RDEDGSELB,
	.WREdgSel = LP_WREDGSELB,
	.RDCapSel = LP_RDCAPSELB,
	.WRCapSel = LP_WRCAPSELB,
	.RDCapFlg = LP_RDCAPFLGB,
	.RDIntSel = LP_RDINTSELB,
	.WRIntSel = LP_WRINTSELB,
146
147
};

148
static struct dio_private dio_private_C = {
149
150
151
152
153
154
155
156
157
	.RDDIn = LP_RDDINC,
	.WRDOut = LP_WRDOUTC,
	.RDEdgSel = LP_RDEDGSELC,
	.WREdgSel = LP_WREDGSELC,
	.RDCapSel = LP_RDCAPSELC,
	.WRCapSel = LP_WRCAPSELC,
	.RDCapFlg = LP_RDCAPFLGC,
	.RDIntSel = LP_RDINTSELC,
	.WRIntSel = LP_WRINTSELC,
158
159
160
};

/* to group dio devices (48 bits mask and data are not allowed ???)
161
static struct dio_private *dio_private_word[]={
162
163
164
165
166
167
  &dio_private_A,
  &dio_private_B,
  &dio_private_C,
};
*/

168
169
#define devpriv ((struct s626_private *)dev->private)
#define diopriv ((struct dio_private *)s->private)
170

171
/*  COUNTER OBJECT ------------------------------------------------ */
172
struct enc_private {
173
	/*  Pointers to functions that differ for A and B counters: */
174
175
176
177
178
179
180
181
182
183
	uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *);	/* Return clock enable. */
	uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *);	/* Return interrupt source. */
	uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *);	/* Return preload trigger source. */
	uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *);	/* Return standardized operating mode. */
	void (*PulseIndex) (struct comedi_device *dev, struct enc_private *);	/* Generate soft index strobe. */
	void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
	void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
	void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
	void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
	void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *);	/* Reset event capture flags. */
184
185
186
187
188
189

	uint16_t MyCRA;		/*    Address of CRA register. */
	uint16_t MyCRB;		/*    Address of CRB register. */
	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
	/*    register. */
	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
190
};
191

192
#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
193

194
/*  Counter overflow/index event flag masks for RDMISC2. */
195
196
#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
197
198
#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }

199
200
/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
201

202
203
/*  enab/disable a function or test status bit(s) that are accessed */
/*  through Main Control Registers 1 or 2. */
204
#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
205

206
#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
207

208
#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
209
210
211

/* #define WR7146(REGARDS,CTRLWORD)
    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
212
#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
213
214
215
216
217

/* #define RR7146(REGARDS)
    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))

218
#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
219

220
/*  Write a time slot control record to TSL2. */
221
222
#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
223

224
/*  Code macros used for constructing I2C command bytes. */
225
226
227
#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
228

229
static const struct comedi_lrange s626_range_table = { 2, {
230
231
232
							   RANGE(-5, 5),
							   RANGE(-10, 10),
							   }
233
234
};

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*  Execute a DEBI transfer.  This must be called from within a */
/*  critical section. */
static void DEBItransfer(struct comedi_device *dev)
{
	/*  Initiate upload of shadow RAM to DEBI control register. */
	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);

	/*  Wait for completion of upload from shadow RAM to DEBI control */
	/*  register. */
	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
		;

	/*  Wait until DEBI transfer is done. */
	while (RR7146(P_PSR) & PSR_DEBI_S)
		;
}

/*  Initialize the DEBI interface for all transfers. */

static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
{
	uint16_t retval;

	/*  Set up DEBI control register value in shadow RAM. */
	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);

	/*  Execute the DEBI transfer. */
	DEBItransfer(dev);

	/*  Fetch target register value. */
	retval = (uint16_t) RR7146(P_DEBIAD);

	/*  Return register value. */
	return retval;
}

/*  Write a value to a gate array register. */
static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
{

	/*  Set up DEBI control register value in shadow RAM. */
	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
	WR7146(P_DEBIAD, wdata);

	/*  Execute the DEBI transfer. */
	DEBItransfer(dev);
}

/* Replace the specified bits in a gate array register.  Imports: mask
 * specifies bits that are to be preserved, wdata is new value to be
 * or'd with the masked original.
 */
static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
			uint16_t wdata)
{

	/*  Copy target gate array register into P_DEBIAD register. */
	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
	/* Set up DEBI control reg value in shadow RAM. */
	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */

	/*  Write back the modified image. */
	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
	/* Set up DEBI control reg value in shadow  RAM. */

	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
	/* Modify the register image. */
	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
}

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/* **************  EEPROM ACCESS FUNCTIONS  ************** */

static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
{
	/*  Write I2C command to I2C Transfer Control shadow register. */
	WR7146(P_I2CCTRL, val);

	/*  Upload I2C shadow registers into working registers and wait for */
	/*  upload confirmation. */

	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
		;

	/*  Wait until I2C bus transfer is finished or an error occurs. */
	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
		;

	/*  Return non-zero if I2C error occurred. */
	return RR7146(P_I2CCTRL) & I2C_ERR;

}

/*  Read uint8_t from EEPROM. */
static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
{
	uint8_t rtnval;

	/*  Send EEPROM target address. */
	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
			 | I2C_B1(I2C_ATTRSTOP, addr)
			 /* Byte1 = EEPROM internal target address. */
			 | I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
		/*  Abort function and declare error if handshake failed. */
		return 0;
	}
	/*  Execute EEPROM read. */
	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)

			 /*  Byte2 = I2C */
			 /*  command: read */
			 /*  from I2C EEPROM */
			 /*  device. */
			 |I2C_B1(I2C_ATTRSTOP, 0)

			 /*  Byte1 receives */
			 /*  uint8_t from */
			 /*  EEPROM. */
			 |I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */

		/*  Abort function and declare error if handshake failed. */
		return 0;
	}
	/*  Return copy of EEPROM value. */
	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
	return rtnval;
}

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* ***********  DAC FUNCTIONS *********** */

/*  Slot 0 base settings. */
#define VECT0	(XSD2 | RSD3 | SIB_A2)
/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */

/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };

/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };

/* Private helper function: Transmit serial data to DAC via Audio
 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
 * Dacpol contains valid target image.
 */
static void SendDAC(struct comedi_device *dev, uint32_t val)
{

	/* START THE SERIAL CLOCK RUNNING ------------- */

	/* Assert DAC polarity control and enable gating of DAC serial clock
	 * and audio bit stream signals.  At this point in time we must be
	 * assured of being in time slot 0.  If we are not in slot 0, the
	 * serial clock and audio stream signals will be disabled; this is
	 * because the following DEBIwrite statement (which enables signals
	 * to be passed through the gate array) would execute before the
	 * trailing edge of WS1/WS3 (which turns off the signals), thus
	 * causing the signals to be inactive during the DAC write.
	 */
	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);

	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */

	/* Copy DAC setpoint value to DAC's output DMA buffer. */

	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
	*devpriv->pDacWBuf = val;

	/* enab the output DMA transfer.  This will cause the DMAC to copy
	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
	 * then immediately terminate because the protection address is
	 * reached upon transfer of the first DWORD value.
	 */
	MC_ENABLE(P_MC1, MC1_A2OUT);

	/*  While the DMA transfer is executing ... */

	/* Reset Audio2 output FIFO's underflow flag (along with any other
	 * FIFO underflow/overflow flags).  When set, this flag will
	 * indicate that we have emerged from slot 0.
	 */
	WR7146(P_ISR, ISR_AFOU);

	/* Wait for the DMA transfer to finish so that there will be data
	 * available in the FIFO when time slot 1 tries to transfer a DWORD
	 * from the FIFO to the output buffer register.  We test for DMA
	 * Done by polling the DMAC enable flag; this flag is automatically
	 * cleared when the transfer has finished.
	 */
	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
		;

	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */

	/* FIFO data is now available, so we enable execution of time slots
	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
	 * detection.
	 */
	SETVECT(0, XSD2 | RSD3 | SIB_A2);

	/* Wait for slot 1 to execute to ensure that the Packet will be
	 * transmitted.  This is detected by polling the Audio2 output FIFO
	 * underflow flag, which will be set when slot 1 execution has
	 * finished transferring the DAC's data DWORD from the output FIFO
	 * to the output buffer register.
	 */
	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
		;

	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
	 * back to slot 0 after executing the EOS in slot 5.  Also,
	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
	 * stored in the last byte to be shifted out of the FIFO's DWORD
	 * buffer register.
	 */
	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);

	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */

	/* Wait for the TSL to finish executing all time slots before
	 * exiting this function.  We must do this so that the next DAC
	 * write doesn't start, thereby enabling clock/chip select signals:
	 *
	 * 1. Before the TSL sequence cycles back to slot 0, which disables
	 *    the clock/cs signal gating and traps slot // list execution.
	 *    we have not yet finished slot 5 then the clock/cs signals are
	 *    still gated and we have not finished transmitting the stream.
	 *
	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
	 *    this case, the slot sequence is currently repeating, but with
	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
	 *    execution before setting up the next DAC setpoint DMA transfer
	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
	 *    the TSL has not yet finished executing slot 5 ...
	 */
	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
		/* The trap was set on time and we are still executing somewhere
		 * in slots 2-5, so we now wait for slot 0 to execute and trap
		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
		 */
		while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
			;
	}
	/* Either (1) we were too late setting the slot 0 trap; the TSL
	 * sequencer restarted slot 0 before we could set the EOS trap flag,
	 * or (2) we were not late and execution is now trapped at slot 0.
	 * In either case, we must now change slot 0 so that it will store
	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
	 * In order to do this, we reprogram slot 0 so that it will shift in
	 * SD3, which is driven only by a pull-up resistor.
	 */
	SETVECT(0, RSD3 | SIB_A2 | EOS);

	/* Wait for slot 0 to execute, at which time the TSL is setup for
	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
	 * from 0x00 to 0xFF.
	 */
	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
		;
}

/*  Private helper function: Write setpoint to an application DAC channel. */
static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
{
	register uint16_t signmask;
	register uint32_t WSImage;

	/*  Adjust DAC data polarity and set up Polarity Control Register */
	/*  image. */
	signmask = 1 << chan;
	if (dacdata < 0) {
		dacdata = -dacdata;
		devpriv->Dacpol |= signmask;
	} else
		devpriv->Dacpol &= ~signmask;

	/*  Limit DAC setpoint value to valid range. */
	if ((uint16_t) dacdata > 0x1FFF)
		dacdata = 0x1FFF;

	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
	 * data to a non-existent TrimDac channel just to keep the clock
	 * running after sending data to the target DAC.  This is necessary
	 * to eliminate the clock glitch that would otherwise occur at the
	 * end of the target DAC's serial data stream.  When the sequence
	 * restarts at V0 (after executing V5), the gate array automatically
	 * disables gating for the DAC clock and all DAC chip selects.
	 */

	WSImage = (chan & 2) ? WS1 : WS2;
	/* Choose DAC chip select to be asserted. */
	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
	/* Slot 2: Transmit high data byte to target DAC. */
	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
	/* Slot 3: Transmit low data byte to target DAC. */
	SETVECT(4, XSD2 | XFIFO_3 | WS3);
	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
	/* Slot 5: running after writing target DAC's low data byte. */

	/*  Construct and transmit target DAC's serial packet:
	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
	 * to a  non-existent TrimDac channel) that serves to keep the clock
	 * running after the packet has been sent to the target DAC.
	 */
	SendDAC(dev, 0x0F000000
		/* Continue clock after target DAC data (write to non-existent trimdac). */
		| 0x00004000
		/* Address the two main dual-DAC devices (TSL's chip select enables
		 * target device). */
		| ((uint32_t) (chan & 1) << 15)
		/*  Address the DAC channel within the  device. */
		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */

}

static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
			 uint8_t DacData)
{
	uint32_t chan;

	/*  Save the new setpoint in case the application needs to read it back later. */
	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;

	/*  Map logical channel number to physical channel number. */
	chan = (uint32_t) trimchan[LogicalChan];

	/* Set up TSL2 records for TrimDac write operation.  All slots shift
	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
	 * can be detected.
	 */

	SETVECT(2, XSD2 | XFIFO_1 | WS3);
	/* Slot 2: Send high uint8_t to target TrimDac. */
	SETVECT(3, XSD2 | XFIFO_0 | WS3);
	/* Slot 3: Send low uint8_t to target TrimDac. */
	SETVECT(4, XSD2 | XFIFO_3 | WS1);
	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
	/* Slot 5: Send NOP low  uint8_t to DAC0. */

	/* Construct and transmit target DAC's serial packet:
	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
	 * WORD value (that writes a channel 0 NOP command to a non-existent
	 * main DAC channel) that serves to keep the clock running after the
	 * packet has been sent to the target DAC.
	 */

	/*  Address the DAC channel within the trimdac device. */
	SendDAC(dev, ((uint32_t) chan << 8)
		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
}

static void LoadTrimDACs(struct comedi_device *dev)
{
	register uint8_t i;

	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
}

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/* ******  COUNTER FUNCTIONS  ******* */
/* All counter functions address a specific counter by means of the
 * "Counter" argument, which is a logical counter number.  The Counter
 * argument may have any of the following legal values: 0=0A, 1=1A,
 * 2=2A, 3=0B, 4=1B, 5=2B.
 */

/*  Read a counter's output latch. */
static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
{
	register uint32_t value;

	/*  Latch counts and fetch LSW of latched counts value. */
	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);

	/*  Fetch MSW of latched counts and combine with LSW. */
	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);

	/*  Return latched counts. */
	return value;
}

/* Return/set a counter pair's latch trigger source.  0: On read
 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
 * latches B.
 */
static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
			   uint16_t value)
{
	DEBIreplace(dev, k->MyCRB,
		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
		    (uint16_t) (value << CRBBIT_LATCHSRC));
}

/*  Write value into counter preload register. */
static void Preload(struct comedi_device *dev, struct enc_private *k,
		    uint32_t value)
{
642
	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);
643
644
645
646
	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
		  (uint16_t) (value >> 16));
}

647
static unsigned int s626_ai_reg_to_uint(int data)
648
{
649
	unsigned int tempdata;
650

651
652
653
654
655
	tempdata = (data >> 18);
	if (tempdata & 0x2000)
		tempdata &= 0x1fff;
	else
		tempdata += (1 << 13);
656

657
658
	return tempdata;
}
659

660
661
662
/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
/*   return 0; */
/* } */
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
	unsigned int group;
	unsigned int bitmask;
	unsigned int status;

	/* select dio bank */
	group = chan / 16;
	bitmask = 1 << (chan - (16 * group));

	/* set channel to capture positive edge */
	status = DEBIread(dev,
			  ((struct dio_private *)(dev->subdevices + 2 +
						  group)->private)->RDEdgSel);
	DEBIwrite(dev,
		  ((struct dio_private *)(dev->subdevices + 2 +
					  group)->private)->WREdgSel,
		  bitmask | status);

	/* enable interrupt on selected channel */
	status = DEBIread(dev,
			  ((struct dio_private *)(dev->subdevices + 2 +
						  group)->private)->RDIntSel);
	DEBIwrite(dev,
		  ((struct dio_private *)(dev->subdevices + 2 +
					  group)->private)->WRIntSel,
		  bitmask | status);

	/* enable edge capture write command */
	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);

	/* enable edge capture on selected channel */
	status = DEBIread(dev,
			  ((struct dio_private *)(dev->subdevices + 2 +
						  group)->private)->RDCapSel);
	DEBIwrite(dev,
		  ((struct dio_private *)(dev->subdevices + 2 +
					  group)->private)->WRCapSel,
		  bitmask | status);

	return 0;
}

static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
			      unsigned int mask)
{
	/* disable edge capture write command */
	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);

	/* enable edge capture on selected channel */
	DEBIwrite(dev,
		  ((struct dio_private *)(dev->subdevices + 2 +
					  group)->private)->WRCapSel, mask);

	return 0;
}

static int s626_dio_clear_irq(struct comedi_device *dev)
{
	unsigned int group;

	/* disable edge capture write command */
	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);

	for (group = 0; group < S626_DIO_BANKS; group++) {
		/* clear pending events and interrupt */
		DEBIwrite(dev,
			  ((struct dio_private *)(dev->subdevices + 2 +
						  group)->private)->WRCapSel,
			  0xffff);
	}

	return 0;
}

739
740
741
742
743
744
745
746
747
748
749
750
751
static irqreturn_t s626_irq_handler(int irq, void *d)
{
	struct comedi_device *dev = d;
	struct comedi_subdevice *s;
	struct comedi_cmd *cmd;
	struct enc_private *k;
	unsigned long flags;
	int32_t *readaddr;
	uint32_t irqtype, irqstatus;
	int i = 0;
	short tempdata;
	uint8_t group;
	uint16_t irqbit;
752

753
754
755
756
	if (dev->attached == 0)
		return IRQ_NONE;
	/*  lock to avoid race with comedi_poll */
	spin_lock_irqsave(&dev->spinlock, flags);
757

758
759
	/* save interrupt enable register state */
	irqstatus = readl(devpriv->base_addr + P_IER);
760

761
762
	/* read interrupt type */
	irqtype = readl(devpriv->base_addr + P_ISR);
763

764
765
	/* disable master interrupt */
	writel(0, devpriv->base_addr + P_IER);
766

767
768
	/* clear interrupt */
	writel(irqtype, devpriv->base_addr + P_ISR);
769

770
771
772
773
774
	switch (irqtype) {
	case IRQ_RPS1:		/*  end_of_scan occurs */
		/*  manage ai subdevice */
		s = dev->subdevices;
		cmd = &(s->async->cmd);
775

776
777
778
779
780
		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
		 * first uint16_t in the buffer because it contains junk data from
		 * the final ADC of the previous poll list scan.
		 */
		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
781

782
783
784
785
786
787
		/*  get the data and hand it over to comedi */
		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
			/*  Convert ADC data to 16-bit integer values and copy to application */
			/*  buffer. */
			tempdata = s626_ai_reg_to_uint((int)*readaddr);
			readaddr++;
788

789
790
791
792
793
			/* put data into read buffer */
			/*  comedi_buf_put(s->async, tempdata); */
			if (cfc_write_to_buffer(s, tempdata) == 0)
				printk
				    ("s626_irq_handler: cfc_write_to_buffer error!\n");
794
795
		}

796
797
		/* end of scan occurs */
		s->async->events |= COMEDI_CB_EOS;
798

799
800
801
802
		if (!(devpriv->ai_continous))
			devpriv->ai_sample_count--;
		if (devpriv->ai_sample_count <= 0) {
			devpriv->ai_cmd_running = 0;
803

804
805
			/*  Stop RPS program. */
			MC_DISABLE(P_MC1, MC1_ERPS1);
806

807
808
			/* send end of acquisition */
			s->async->events |= COMEDI_CB_EOA;
809

810
811
812
			/* disable master interrupt */
			irqstatus = 0;
		}
813

814
		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
815
816
817
818
819
820
821
822
			s626_dio_set_irq(dev, cmd->scan_begin_arg);
		/*  tell comedi that data is there */
		comedi_event(dev, s);
		break;
	case IRQ_GPIO3:	/* check dio and conter interrupt */
		/*  manage ai subdevice */
		s = dev->subdevices;
		cmd = &(s->async->cmd);
823

824
		/* s626_dio_clear_irq(dev); */
825

826
827
828
829
830
831
832
833
834
		for (group = 0; group < S626_DIO_BANKS; group++) {
			irqbit = 0;
			/* read interrupt type */
			irqbit = DEBIread(dev,
					  ((struct dio_private *)(dev->
								  subdevices +
								  2 +
								  group)->
					   private)->RDCapFlg);
835

836
837
838
839
840
841
842
843
844
845
			/* check if interrupt is generated from dio channels */
			if (irqbit) {
				s626_dio_reset_irq(dev, group, irqbit);
				if (devpriv->ai_cmd_running) {
					/* check if interrupt is an ai acquisition start trigger */
					if ((irqbit >> (cmd->start_arg -
							(16 * group)))
					    == 1 && cmd->start_src == TRIG_EXT) {
						/*  Start executing the RPS program. */
						MC_ENABLE(P_MC1, MC1_ERPS1);
846

847
848
849
850
851
852
853
854
855
856
857
858
859
						if (cmd->scan_begin_src ==
						    TRIG_EXT) {
							s626_dio_set_irq(dev,
									 cmd->scan_begin_arg);
						}
					}
					if ((irqbit >> (cmd->scan_begin_arg -
							(16 * group)))
					    == 1
					    && cmd->scan_begin_src ==
					    TRIG_EXT) {
						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
						MC_ENABLE(P_MC2, MC2_ADC_RPS);
860

861
862
863
864
						if (cmd->convert_src ==
						    TRIG_EXT) {
							devpriv->ai_convert_count
							    = cmd->chanlist_len;
865

866
867
868
							s626_dio_set_irq(dev,
									 cmd->convert_arg);
						}
869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
						if (cmd->convert_src ==
						    TRIG_TIMER) {
							k = &encpriv[5];
							devpriv->ai_convert_count
							    = cmd->chanlist_len;
							k->SetEnable(dev, k,
								     CLKENAB_ALWAYS);
						}
					}
					if ((irqbit >> (cmd->convert_arg -
							(16 * group)))
					    == 1
					    && cmd->convert_src == TRIG_EXT) {
						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
						MC_ENABLE(P_MC2, MC2_ADC_RPS);
885

886
						devpriv->ai_convert_count--;
887

888
889
890
891
892
893
894
895
896
897
						if (devpriv->ai_convert_count >
						    0) {
							s626_dio_set_irq(dev,
									 cmd->convert_arg);
						}
					}
				}
				break;
			}
		}
898

899
900
		/* read interrupt type */
		irqbit = DEBIread(dev, LP_RDMISC2);
901

902
903
904
		/* check interrupt on counters */
		if (irqbit & IRQ_COINT1A) {
			k = &encpriv[0];
905

906
907
908
909
910
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT2A) {
			k = &encpriv[1];
911

912
913
914
915
916
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT3A) {
			k = &encpriv[2];
917

918
919
920
921
922
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT1B) {
			k = &encpriv[3];
923

924
925
926
927
928
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT2B) {
			k = &encpriv[4];
929

930
931
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
932

933
934
935
936
			if (devpriv->ai_convert_count > 0) {
				devpriv->ai_convert_count--;
				if (devpriv->ai_convert_count == 0)
					k->SetEnable(dev, k, CLKENAB_INDEX);
937

938
939
940
941
942
943
944
945
				if (cmd->convert_src == TRIG_TIMER) {
					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
					MC_ENABLE(P_MC2, MC2_ADC_RPS);
				}
			}
		}
		if (irqbit & IRQ_COINT3B) {
			k = &encpriv[5];
946

947
948
			/* clear interrupt capture flag */
			k->ResetCapFlags(dev, k);
949

950
951
952
953
			if (cmd->scan_begin_src == TRIG_TIMER) {
				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
				MC_ENABLE(P_MC2, MC2_ADC_RPS);
			}
954

955
956
957
958
959
960
961
			if (cmd->convert_src == TRIG_TIMER) {
				k = &encpriv[4];
				devpriv->ai_convert_count = cmd->chanlist_len;
				k->SetEnable(dev, k, CLKENAB_ALWAYS);
			}
		}
	}
962

963
964
	/* enable interrupt */
	writel(irqstatus, devpriv->base_addr + P_IER);
965

966
967
968
	spin_unlock_irqrestore(&dev->spinlock, flags);
	return IRQ_HANDLED;
}
969

970
971
972
973
974
975
976
977
978
979
980
/*
 * this functions build the RPS program for hardware driven acquistion
 */
static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
{
	register uint32_t *pRPS;
	uint32_t JmpAdrs;
	uint16_t i;
	uint16_t n;
	uint32_t LocalPPL;
	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
981

982
983
	/*  Stop RPS program in case it is currently running. */
	MC_DISABLE(P_MC1, MC1_ERPS1);
984

985
986
	/*  Set starting logical address to write RPS commands. */
	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
987

988
989
	/*  Initialize RPS instruction pointer. */
	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
990

991
	/*  Construct RPS program in RPSBuf DMA buffer */
992

993
994
995
996
997
	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
		/*  Wait for Start trigger. */
		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
	}
998

999
1000
	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
	 * because the first RPS DEBI Write following a non-RPS DEBI write
For faster browsing, not all history is shown. View entire blame