dm-thin.c 109 KB
Newer Older
1
/*
2
 * Copyright (C) 2011-2012 Red Hat UK.
3
4
5
6
7
 *
 * This file is released under the GPL.
 */

#include "dm-thin-metadata.h"
8
#include "dm-bio-prison-v1.h"
9
#include "dm.h"
10
11
12
13

#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
14
#include <linux/jiffies.h>
15
#include <linux/log2.h>
16
#include <linux/list.h>
17
#include <linux/rculist.h>
18
19
20
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
21
#include <linux/vmalloc.h>
22
#include <linux/sort.h>
23
#include <linux/rbtree.h>
24
25
26
27
28
29

#define	DM_MSG_PREFIX	"thin"

/*
 * Tunable constants
 */
30
#define ENDIO_HOOK_POOL_SIZE 1024
31
#define MAPPING_POOL_SIZE 1024
32
#define COMMIT_PERIOD HZ
33
34
35
#define NO_SPACE_TIMEOUT_SECS 60

static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36

37
38
39
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
		"A percentage of time allocated for copy on write");

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
 * The block size of the device holding pool data must be
 * between 64KB and 1GB.
 */
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)

/*
 * Device id is restricted to 24 bits.
 */
#define MAX_DEV_ID ((1 << 24) - 1)

/*
 * How do we handle breaking sharing of data blocks?
 * =================================================
 *
 * We use a standard copy-on-write btree to store the mappings for the
 * devices (note I'm talking about copy-on-write of the metadata here, not
 * the data).  When you take an internal snapshot you clone the root node
 * of the origin btree.  After this there is no concept of an origin or a
 * snapshot.  They are just two device trees that happen to point to the
 * same data blocks.
 *
 * When we get a write in we decide if it's to a shared data block using
 * some timestamp magic.  If it is, we have to break sharing.
 *
 * Let's say we write to a shared block in what was the origin.  The
 * steps are:
 *
 * i) plug io further to this physical block. (see bio_prison code).
 *
 * ii) quiesce any read io to that shared data block.  Obviously
72
 * including all devices that share this block.  (see dm_deferred_set code)
73
74
75
76
77
 *
 * iii) copy the data block to a newly allocate block.  This step can be
 * missed out if the io covers the block. (schedule_copy).
 *
 * iv) insert the new mapping into the origin's btree
Joe Thornber's avatar
Joe Thornber committed
78
 * (process_prepared_mapping).  This act of inserting breaks some
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
 * sharing of btree nodes between the two devices.  Breaking sharing only
 * effects the btree of that specific device.  Btrees for the other
 * devices that share the block never change.  The btree for the origin
 * device as it was after the last commit is untouched, ie. we're using
 * persistent data structures in the functional programming sense.
 *
 * v) unplug io to this physical block, including the io that triggered
 * the breaking of sharing.
 *
 * Steps (ii) and (iii) occur in parallel.
 *
 * The metadata _doesn't_ need to be committed before the io continues.  We
 * get away with this because the io is always written to a _new_ block.
 * If there's a crash, then:
 *
 * - The origin mapping will point to the old origin block (the shared
 * one).  This will contain the data as it was before the io that triggered
 * the breaking of sharing came in.
 *
 * - The snap mapping still points to the old block.  As it would after
 * the commit.
 *
 * The downside of this scheme is the timestamp magic isn't perfect, and
 * will continue to think that data block in the snapshot device is shared
 * even after the write to the origin has broken sharing.  I suspect data
 * blocks will typically be shared by many different devices, so we're
 * breaking sharing n + 1 times, rather than n, where n is the number of
 * devices that reference this data block.  At the moment I think the
 * benefits far, far outweigh the disadvantages.
 */

/*----------------------------------------------------------------*/

/*
 * Key building.
 */
Joe Thornber's avatar
Joe Thornber committed
115
116
117
118
119
120
121
enum lock_space {
	VIRTUAL,
	PHYSICAL
};

static void build_key(struct dm_thin_device *td, enum lock_space ls,
		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122
{
Joe Thornber's avatar
Joe Thornber committed
123
	key->virtual = (ls == VIRTUAL);
124
	key->dev = dm_thin_dev_id(td);
125
	key->block_begin = b;
Joe Thornber's avatar
Joe Thornber committed
126
127
128
129
130
131
132
	key->block_end = e;
}

static void build_data_key(struct dm_thin_device *td, dm_block_t b,
			   struct dm_cell_key *key)
{
	build_key(td, PHYSICAL, b, b + 1llu, key);
133
134
135
}

static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136
			      struct dm_cell_key *key)
137
{
Joe Thornber's avatar
Joe Thornber committed
138
	build_key(td, VIRTUAL, b, b + 1llu, key);
139
140
141
142
}

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#define THROTTLE_THRESHOLD (1 * HZ)

struct throttle {
	struct rw_semaphore lock;
	unsigned long threshold;
	bool throttle_applied;
};

static void throttle_init(struct throttle *t)
{
	init_rwsem(&t->lock);
	t->throttle_applied = false;
}

static void throttle_work_start(struct throttle *t)
{
	t->threshold = jiffies + THROTTLE_THRESHOLD;
}

static void throttle_work_update(struct throttle *t)
{
	if (!t->throttle_applied && jiffies > t->threshold) {
		down_write(&t->lock);
		t->throttle_applied = true;
	}
}

static void throttle_work_complete(struct throttle *t)
{
	if (t->throttle_applied) {
		t->throttle_applied = false;
		up_write(&t->lock);
	}
}

static void throttle_lock(struct throttle *t)
{
	down_read(&t->lock);
}

static void throttle_unlock(struct throttle *t)
{
	up_read(&t->lock);
}

/*----------------------------------------------------------------*/

190
191
192
193
194
/*
 * A pool device ties together a metadata device and a data device.  It
 * also provides the interface for creating and destroying internal
 * devices.
 */
Mike Snitzer's avatar
Mike Snitzer committed
195
struct dm_thin_new_mapping;
196

197
/*
198
 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199
200
201
 */
enum pool_mode {
	PM_WRITE,		/* metadata may be changed */
202
	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203
204
205
206
	PM_READ_ONLY,		/* metadata may not be changed */
	PM_FAIL,		/* all I/O fails */
};

207
struct pool_features {
208
209
	enum pool_mode mode;

Mike Snitzer's avatar
Mike Snitzer committed
210
211
212
	bool zero_new_blocks:1;
	bool discard_enabled:1;
	bool discard_passdown:1;
213
	bool error_if_no_space:1;
214
215
};

216
217
struct thin_c;
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219
220
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);

221
222
#define CELL_SORT_ARRAY_SIZE 8192

223
224
225
226
227
228
229
230
231
struct pool {
	struct list_head list;
	struct dm_target *ti;	/* Only set if a pool target is bound */

	struct mapped_device *pool_md;
	struct block_device *md_dev;
	struct dm_pool_metadata *pmd;

	dm_block_t low_water_blocks;
232
	uint32_t sectors_per_block;
233
	int sectors_per_block_shift;
234

235
	struct pool_features pf;
236
	bool low_water_triggered:1;	/* A dm event has been sent */
237
	bool suspended:1;
238
	bool out_of_data_space:1;
239

240
	struct dm_bio_prison *prison;
241
242
243
	struct dm_kcopyd_client *copier;

	struct workqueue_struct *wq;
Joe Thornber's avatar
Joe Thornber committed
244
	struct throttle throttle;
245
	struct work_struct worker;
246
	struct delayed_work waker;
247
	struct delayed_work no_space_timeout;
248

249
	unsigned long last_commit_jiffies;
250
	unsigned ref_count;
251
252
253
254

	spinlock_t lock;
	struct bio_list deferred_flush_bios;
	struct list_head prepared_mappings;
Joe Thornber's avatar
Joe Thornber committed
255
	struct list_head prepared_discards;
256
	struct list_head prepared_discards_pt2;
257
	struct list_head active_thins;
258

259
260
	struct dm_deferred_set *shared_read_ds;
	struct dm_deferred_set *all_io_ds;
261

Mike Snitzer's avatar
Mike Snitzer committed
262
	struct dm_thin_new_mapping *next_mapping;
263
	mempool_t *mapping_pool;
264
265
266
267

	process_bio_fn process_bio;
	process_bio_fn process_discard;

268
269
270
	process_cell_fn process_cell;
	process_cell_fn process_discard_cell;

271
272
	process_mapping_fn process_prepared_mapping;
	process_mapping_fn process_prepared_discard;
273
	process_mapping_fn process_prepared_discard_pt2;
274

275
	struct dm_bio_prison_cell **cell_sort_array;
276
277
};

278
static enum pool_mode get_pool_mode(struct pool *pool);
279
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280

281
282
283
284
285
286
287
288
289
290
291
/*
 * Target context for a pool.
 */
struct pool_c {
	struct dm_target *ti;
	struct pool *pool;
	struct dm_dev *data_dev;
	struct dm_dev *metadata_dev;
	struct dm_target_callbacks callbacks;

	dm_block_t low_water_blocks;
292
293
	struct pool_features requested_pf; /* Features requested during table load */
	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294
295
296
297
298
299
};

/*
 * Target context for a thin.
 */
struct thin_c {
300
	struct list_head list;
301
	struct dm_dev *pool_dev;
302
	struct dm_dev *origin_dev;
303
	sector_t origin_size;
304
305
306
307
	dm_thin_id dev_id;

	struct pool *pool;
	struct dm_thin_device *td;
308
309
	struct mapped_device *thin_md;

310
	bool requeue_mode:1;
311
	spinlock_t lock;
312
	struct list_head deferred_cells;
313
314
	struct bio_list deferred_bio_list;
	struct bio_list retry_on_resume_list;
315
	struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317
318
319
320
321
322

	/*
	 * Ensures the thin is not destroyed until the worker has finished
	 * iterating the active_thins list.
	 */
	atomic_t refcount;
	struct completion can_destroy;
323
324
325
326
};

/*----------------------------------------------------------------*/

Joe Thornber's avatar
Joe Thornber committed
327
328
329
330
331
332
333
334
335
336
337
338
static bool block_size_is_power_of_two(struct pool *pool)
{
	return pool->sectors_per_block_shift >= 0;
}

static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
{
	return block_size_is_power_of_two(pool) ?
		(b << pool->sectors_per_block_shift) :
		(b * pool->sectors_per_block);
}

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*----------------------------------------------------------------*/

struct discard_op {
	struct thin_c *tc;
	struct blk_plug plug;
	struct bio *parent_bio;
	struct bio *bio;
};

static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
{
	BUG_ON(!parent);

	op->tc = tc;
	blk_start_plug(&op->plug);
	op->parent_bio = parent;
	op->bio = NULL;
}

static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
Joe Thornber's avatar
Joe Thornber committed
359
{
360
	struct thin_c *tc = op->tc;
Joe Thornber's avatar
Joe Thornber committed
361
362
	sector_t s = block_to_sectors(tc->pool, data_b);
	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363

364
	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365
				      GFP_NOWAIT, 0, &op->bio);
366
367
368
369
370
371
372
373
374
375
}

static void end_discard(struct discard_op *op, int r)
{
	if (op->bio) {
		/*
		 * Even if one of the calls to issue_discard failed, we
		 * need to wait for the chain to complete.
		 */
		bio_chain(op->bio, op->parent_bio);
Mike Christie's avatar
Mike Christie committed
376
		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377
		submit_bio(op->bio);
378
	}
Joe Thornber's avatar
Joe Thornber committed
379

380
381
382
383
384
385
386
387
388
	blk_finish_plug(&op->plug);

	/*
	 * Even if r is set, there could be sub discards in flight that we
	 * need to wait for.
	 */
	if (r && !op->parent_bio->bi_error)
		op->parent_bio->bi_error = r;
	bio_endio(op->parent_bio);
Joe Thornber's avatar
Joe Thornber committed
389
390
391
392
}

/*----------------------------------------------------------------*/

393
394
395
396
397
398
399
400
401
402
403
/*
 * wake_worker() is used when new work is queued and when pool_resume is
 * ready to continue deferred IO processing.
 */
static void wake_worker(struct pool *pool)
{
	queue_work(pool->wq, &pool->worker);
}

/*----------------------------------------------------------------*/

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
		      struct dm_bio_prison_cell **cell_result)
{
	int r;
	struct dm_bio_prison_cell *cell_prealloc;

	/*
	 * Allocate a cell from the prison's mempool.
	 * This might block but it can't fail.
	 */
	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);

	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
	if (r)
		/*
		 * We reused an old cell; we can get rid of
		 * the new one.
		 */
		dm_bio_prison_free_cell(pool->prison, cell_prealloc);

	return r;
}

static void cell_release(struct pool *pool,
			 struct dm_bio_prison_cell *cell,
			 struct bio_list *bios)
{
	dm_cell_release(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

435
436
437
438
439
440
441
442
443
static void cell_visit_release(struct pool *pool,
			       void (*fn)(void *, struct dm_bio_prison_cell *),
			       void *context,
			       struct dm_bio_prison_cell *cell)
{
	dm_cell_visit_release(pool->prison, fn, context, cell);
	dm_bio_prison_free_cell(pool->prison, cell);
}

444
445
446
447
448
449
450
451
static void cell_release_no_holder(struct pool *pool,
				   struct dm_bio_prison_cell *cell,
				   struct bio_list *bios)
{
	dm_cell_release_no_holder(pool->prison, cell, bios);
	dm_bio_prison_free_cell(pool->prison, cell);
}

452
453
static void cell_error_with_code(struct pool *pool,
				 struct dm_bio_prison_cell *cell, int error_code)
454
{
455
	dm_cell_error(pool->prison, cell, error_code);
456
457
458
	dm_bio_prison_free_cell(pool->prison, cell);
}

459
460
461
462
463
static int get_pool_io_error_code(struct pool *pool)
{
	return pool->out_of_data_space ? -ENOSPC : -EIO;
}

464
465
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
{
466
467
468
	int error = get_pool_io_error_code(pool);

	cell_error_with_code(pool, cell, error);
469
470
}

471
472
473
474
475
476
477
478
479
480
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, 0);
}

static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
{
	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
}

481
482
/*----------------------------------------------------------------*/

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 * A global list of pools that uses a struct mapped_device as a key.
 */
static struct dm_thin_pool_table {
	struct mutex mutex;
	struct list_head pools;
} dm_thin_pool_table;

static void pool_table_init(void)
{
	mutex_init(&dm_thin_pool_table.mutex);
	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
}

static void __pool_table_insert(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_add(&pool->list, &dm_thin_pool_table.pools);
}

static void __pool_table_remove(struct pool *pool)
{
	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
	list_del(&pool->list);
}

static struct pool *__pool_table_lookup(struct mapped_device *md)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->pool_md == md) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
{
	struct pool *pool = NULL, *tmp;

	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));

	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
		if (tmp->md_dev == md_dev) {
			pool = tmp;
			break;
		}
	}

	return pool;
}

/*----------------------------------------------------------------*/

Mike Snitzer's avatar
Mike Snitzer committed
543
struct dm_thin_endio_hook {
544
	struct thin_c *tc;
545
546
	struct dm_deferred_entry *shared_read_entry;
	struct dm_deferred_entry *all_io_entry;
Mike Snitzer's avatar
Mike Snitzer committed
547
	struct dm_thin_new_mapping *overwrite_mapping;
548
	struct rb_node rb_node;
Joe Thornber's avatar
Joe Thornber committed
549
	struct dm_bio_prison_cell *cell;
550
551
};

552
553
554
555
556
557
558
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
{
	bio_list_merge(bios, master);
	bio_list_init(master);
}

static void error_bio_list(struct bio_list *bios, int error)
559
560
{
	struct bio *bio;
561

562
563
564
565
	while ((bio = bio_list_pop(bios))) {
		bio->bi_error = error;
		bio_endio(bio);
	}
566
567
568
569
}

static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
{
570
	struct bio_list bios;
571
	unsigned long flags;
572
573

	bio_list_init(&bios);
574

575
	spin_lock_irqsave(&tc->lock, flags);
576
	__merge_bio_list(&bios, master);
577
	spin_unlock_irqrestore(&tc->lock, flags);
578

579
	error_bio_list(&bios, error);
580
581
}

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
static void requeue_deferred_cells(struct thin_c *tc)
{
	struct pool *pool = tc->pool;
	unsigned long flags;
	struct list_head cells;
	struct dm_bio_prison_cell *cell, *tmp;

	INIT_LIST_HEAD(&cells);

	spin_lock_irqsave(&tc->lock, flags);
	list_splice_init(&tc->deferred_cells, &cells);
	spin_unlock_irqrestore(&tc->lock, flags);

	list_for_each_entry_safe(cell, tmp, &cells, user_list)
		cell_requeue(pool, cell);
}

599
600
static void requeue_io(struct thin_c *tc)
{
601
	struct bio_list bios;
602
	unsigned long flags;
603
604
605

	bio_list_init(&bios);

606
	spin_lock_irqsave(&tc->lock, flags);
607
608
	__merge_bio_list(&bios, &tc->deferred_bio_list);
	__merge_bio_list(&bios, &tc->retry_on_resume_list);
609
	spin_unlock_irqrestore(&tc->lock, flags);
610

611
612
	error_bio_list(&bios, DM_ENDIO_REQUEUE);
	requeue_deferred_cells(tc);
613
614
}

615
static void error_retry_list_with_code(struct pool *pool, int error)
616
617
618
619
620
{
	struct thin_c *tc;

	rcu_read_lock();
	list_for_each_entry_rcu(tc, &pool->active_thins, list)
621
		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622
623
624
	rcu_read_unlock();
}

625
626
static void error_retry_list(struct pool *pool)
{
627
628
	int error = get_pool_io_error_code(pool);

629
	error_retry_list_with_code(pool, error);
630
631
}

632
633
634
635
636
637
638
639
640
/*
 * This section of code contains the logic for processing a thin device's IO.
 * Much of the code depends on pool object resources (lists, workqueues, etc)
 * but most is exclusively called from the thin target rather than the thin-pool
 * target.
 */

static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
{
641
	struct pool *pool = tc->pool;
642
	sector_t block_nr = bio->bi_iter.bi_sector;
643

644
645
	if (block_size_is_power_of_two(pool))
		block_nr >>= pool->sectors_per_block_shift;
646
	else
647
		(void) sector_div(block_nr, pool->sectors_per_block);
648
649

	return block_nr;
650
651
}

Joe Thornber's avatar
Joe Thornber committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * Returns the _complete_ blocks that this bio covers.
 */
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
				dm_block_t *begin, dm_block_t *end)
{
	struct pool *pool = tc->pool;
	sector_t b = bio->bi_iter.bi_sector;
	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);

	b += pool->sectors_per_block - 1ull; /* so we round up */

	if (block_size_is_power_of_two(pool)) {
		b >>= pool->sectors_per_block_shift;
		e >>= pool->sectors_per_block_shift;
	} else {
		(void) sector_div(b, pool->sectors_per_block);
		(void) sector_div(e, pool->sectors_per_block);
	}

	if (e < b)
		/* Can happen if the bio is within a single block. */
		e = b;

	*begin = b;
	*end = e;
}

680
681
682
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
{
	struct pool *pool = tc->pool;
683
	sector_t bi_sector = bio->bi_iter.bi_sector;
684
685

	bio->bi_bdev = tc->pool_dev->bdev;
686
	if (block_size_is_power_of_two(pool))
687
688
689
		bio->bi_iter.bi_sector =
			(block << pool->sectors_per_block_shift) |
			(bi_sector & (pool->sectors_per_block - 1));
690
	else
691
		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692
				 sector_div(bi_sector, pool->sectors_per_block);
693
694
}

695
696
697
698
699
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
{
	bio->bi_bdev = tc->origin_dev->bdev;
}

700
701
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
{
702
	return op_is_flush(bio->bi_opf) &&
703
704
705
		dm_thin_changed_this_transaction(tc->td);
}

706
707
708
709
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
{
	struct dm_thin_endio_hook *h;

Mike Christie's avatar
Mike Christie committed
710
	if (bio_op(bio) == REQ_OP_DISCARD)
711
712
		return;

713
	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714
715
716
	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
}

717
static void issue(struct thin_c *tc, struct bio *bio)
718
719
720
721
{
	struct pool *pool = tc->pool;
	unsigned long flags;

722
723
724
725
726
	if (!bio_triggers_commit(tc, bio)) {
		generic_make_request(bio);
		return;
	}

727
	/*
728
729
730
	 * Complete bio with an error if earlier I/O caused changes to
	 * the metadata that can't be committed e.g, due to I/O errors
	 * on the metadata device.
731
	 */
732
733
734
735
736
737
738
739
740
741
742
743
	if (dm_thin_aborted_changes(tc->td)) {
		bio_io_error(bio);
		return;
	}

	/*
	 * Batch together any bios that trigger commits and then issue a
	 * single commit for them in process_deferred_bios().
	 */
	spin_lock_irqsave(&pool->lock, flags);
	bio_list_add(&pool->deferred_flush_bios, bio);
	spin_unlock_irqrestore(&pool->lock, flags);
744
745
}

746
747
748
749
750
751
752
753
754
755
756
757
758
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
{
	remap_to_origin(tc, bio);
	issue(tc, bio);
}

static void remap_and_issue(struct thin_c *tc, struct bio *bio,
			    dm_block_t block)
{
	remap(tc, bio, block);
	issue(tc, bio);
}

759
760
761
762
763
/*----------------------------------------------------------------*/

/*
 * Bio endio functions.
 */
Mike Snitzer's avatar
Mike Snitzer committed
764
struct dm_thin_new_mapping {
765
766
	struct list_head list;

767
	bool pass_discard:1;
Joe Thornber's avatar
Joe Thornber committed
768
	bool maybe_shared:1;
769

770
771
772
773
774
775
776
	/*
	 * Track quiescing, copying and zeroing preparation actions.  When this
	 * counter hits zero the block is prepared and can be inserted into the
	 * btree.
	 */
	atomic_t prepare_actions;

777
	int err;
778
	struct thin_c *tc;
Joe Thornber's avatar
Joe Thornber committed
779
	dm_block_t virt_begin, virt_end;
780
	dm_block_t data_block;
Joe Thornber's avatar
Joe Thornber committed
781
	struct dm_bio_prison_cell *cell;
782
783
784
785
786
787
788
789
790
791
792

	/*
	 * If the bio covers the whole area of a block then we can avoid
	 * zeroing or copying.  Instead this bio is hooked.  The bio will
	 * still be in the cell, so care has to be taken to avoid issuing
	 * the bio twice.
	 */
	struct bio *bio;
	bio_end_io_t *saved_bi_end_io;
};

793
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794
795
796
{
	struct pool *pool = m->tc->pool;

797
	if (atomic_dec_and_test(&m->prepare_actions)) {
798
		list_add_tail(&m->list, &pool->prepared_mappings);
799
800
801
802
		wake_worker(pool);
	}
}

803
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804
805
806
807
808
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
809
	__complete_mapping_preparation(m);
810
811
812
	spin_unlock_irqrestore(&pool->lock, flags);
}

813
814
815
816
817
818
819
820
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
	struct dm_thin_new_mapping *m = context;

	m->err = read_err || write_err ? -EIO : 0;
	complete_mapping_preparation(m);
}

821
static void overwrite_endio(struct bio *bio)
822
{
823
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
Mike Snitzer's avatar
Mike Snitzer committed
824
	struct dm_thin_new_mapping *m = h->overwrite_mapping;
825

826
827
	bio->bi_end_io = m->saved_bi_end_io;

828
	m->err = bio->bi_error;
829
	complete_mapping_preparation(m);
830
831
832
833
834
835
836
837
838
839
840
841
842
}

/*----------------------------------------------------------------*/

/*
 * Workqueue.
 */

/*
 * Prepared mapping jobs.
 */

/*
843
844
 * This sends the bios in the cell, except the original holder, back
 * to the deferred_bios list.
845
 */
846
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847
848
849
850
{
	struct pool *pool = tc->pool;
	unsigned long flags;

851
852
853
	spin_lock_irqsave(&tc->lock, flags);
	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
	spin_unlock_irqrestore(&tc->lock, flags);
854
855
856
857

	wake_worker(pool);
}

858
859
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);

860
861
862
863
864
865
866
867
struct remap_info {
	struct thin_c *tc;
	struct bio_list defer_bios;
	struct bio_list issue_bios;
};

static void __inc_remap_and_issue_cell(void *context,
				       struct dm_bio_prison_cell *cell)
868
{
869
	struct remap_info *info = context;
870
871
	struct bio *bio;

872
	while ((bio = bio_list_pop(&cell->bios))) {
873
		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
874
			bio_list_add(&info->defer_bios, bio);
875
		else {
876
877
878
879
880
881
882
883
			inc_all_io_entry(info->tc->pool, bio);

			/*
			 * We can't issue the bios with the bio prison lock
			 * held, so we add them to a list to issue on
			 * return from this function.
			 */
			bio_list_add(&info->issue_bios, bio);
884
885
886
887
		}
	}
}

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
static void inc_remap_and_issue_cell(struct thin_c *tc,
				     struct dm_bio_prison_cell *cell,
				     dm_block_t block)
{
	struct bio *bio;
	struct remap_info info;

	info.tc = tc;
	bio_list_init(&info.defer_bios);
	bio_list_init(&info.issue_bios);

	/*
	 * We have to be careful to inc any bios we're about to issue
	 * before the cell is released, and avoid a race with new bios
	 * being added to the cell.
	 */
	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
			   &info, cell);

	while ((bio = bio_list_pop(&info.defer_bios)))
		thin_defer_bio(tc, bio);

	while ((bio = bio_list_pop(&info.issue_bios)))
		remap_and_issue(info.tc, bio, block);
}

914
915
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
{
916
	cell_error(m->tc->pool, m->cell);
917
918
919
	list_del(&m->list);
	mempool_free(m, m->tc->pool->mapping_pool);
}
920

Mike Snitzer's avatar
Mike Snitzer committed
921
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
922
923
{
	struct thin_c *tc = m->tc;
924
	struct pool *pool = tc->pool;
925
	struct bio *bio = m->bio;
926
927
928
	int r;

	if (m->err) {
929
		cell_error(pool, m->cell);
930
		goto out;
931
932
933
934
935
936
937
	}

	/*
	 * Commit the prepared block into the mapping btree.
	 * Any I/O for this block arriving after this point will get
	 * remapped to it directly.
	 */
Joe Thornber's avatar
Joe Thornber committed
938
	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
939
	if (r) {
940
		metadata_operation_failed(pool, "dm_thin_insert_block", r);
941
		cell_error(pool, m->cell);
942
		goto out;
943
944
945
946
947
948
949
950
951
	}

	/*
	 * Release any bios held while the block was being provisioned.
	 * If we are processing a write bio that completely covers the block,
	 * we already processed it so can ignore it now when processing
	 * the bios in the cell.
	 */
	if (bio) {
952
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
953
		bio_endio(bio);
954
955
956
957
958
	} else {
		inc_all_io_entry(tc->pool, m->cell->holder);
		remap_and_issue(tc, m->cell->holder, m->data_block);
		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
	}
959

960
out:
961
	list_del(&m->list);
962
	mempool_free(m, pool->mapping_pool);
963
964
}

Joe Thornber's avatar
Joe Thornber committed
965
966
967
/*----------------------------------------------------------------*/

static void free_discard_mapping(struct dm_thin_new_mapping *m)
Joe Thornber's avatar
Joe Thornber committed
968
969
{
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
970
971
972
973
	if (m->cell)
		cell_defer_no_holder(tc, m->cell);
	mempool_free(m, tc->pool->mapping_pool);
}
Joe Thornber's avatar
Joe Thornber committed
974

Joe Thornber's avatar
Joe Thornber committed
975
976
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
{
977
	bio_io_error(m->bio);
Joe Thornber's avatar
Joe Thornber committed
978
979
980
981
982
	free_discard_mapping(m);
}

static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
{
983
	bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
984
985
986
987
988
989
990
991
992
993
994
995
996
	free_discard_mapping(m);
}

static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;

	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
	if (r) {
		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
		bio_io_error(m->bio);
	} else
997
		bio_endio(m->bio);
Joe Thornber's avatar
Joe Thornber committed
998

999
	cell_defer_no_holder(tc, m->cell);
1000
1001
1002
	mempool_free(m, tc->pool->mapping_pool);
}

1003
1004
/*----------------------------------------------------------------*/

1005
1006
static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
						   struct bio *discard_parent)
1007
{
Joe Thornber's avatar
Joe Thornber committed
1008
1009
1010
1011
	/*
	 * We've already unmapped this range of blocks, but before we
	 * passdown we have to check that these blocks are now unused.
	 */
1012
	int r = 0;
Joe Thornber's avatar
Joe Thornber committed
1013
	bool used = true;
1014
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1015
1016
	struct pool *pool = tc->pool;
	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017
	struct discard_op op;
Joe Thornber's avatar
Joe Thornber committed
1018

1019
	begin_discard(&op, tc, discard_parent);
Joe Thornber's avatar
Joe Thornber committed
1020
1021
1022
1023
1024
	while (b != end) {
		/* find start of unmapped run */
		for (; b < end; b++) {
			r = dm_pool_block_is_used(pool->pmd, b, &used);
			if (r)
1025
				goto out;
1026

Joe Thornber's avatar
Joe Thornber committed
1027
1028
			if (!used)
				break;
1029
		}
Joe Thornber's avatar
Joe Thornber committed
1030

Joe Thornber's avatar
Joe Thornber committed
1031
1032
1033
1034
1035
1036
1037
		if (b == end)
			break;

		/* find end of run */
		for (e = b + 1; e != end; e++) {
			r = dm_pool_block_is_used(pool->pmd, e, &used);
			if (r)
1038
				goto out;
Joe Thornber's avatar
Joe Thornber committed
1039
1040
1041
1042
1043

			if (used)
				break;
		}

1044
		r = issue_discard(&op, b, e);
Joe Thornber's avatar
Joe Thornber committed
1045
		if (r)
1046
			goto out;
Joe Thornber's avatar
Joe Thornber committed
1047
1048
1049

		b = e;
	}
1050
1051
out:
	end_discard(&op, r);
Joe Thornber's avatar
Joe Thornber committed
1052
1053
}

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
{
	unsigned long flags;
	struct pool *pool = m->tc->pool;

	spin_lock_irqsave(&pool->lock, flags);
	list_add_tail(&m->list, &pool->prepared_discards_pt2);
	spin_unlock_irqrestore(&pool->lock, flags);
	wake_worker(pool);
}

static void passdown_endio(struct bio *bio)
{
	/*
	 * It doesn't matter if the passdown discard failed, we still want
	 * to unmap (we ignore err).
	 */
	queue_passdown_pt2(bio->bi_private);
1072
	bio_put(bio);
1073
1074
1075
}

static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076
1077
1078
{
	int r;
	struct thin_c *tc = m->tc;
Joe Thornber's avatar
Joe Thornber committed
1079
	struct pool *pool = tc->pool;
1080
1081
	struct bio *discard_parent;
	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082

1083
1084
1085
1086
1087
	/*
	 * Only this thread allocates blocks, so we can be sure that the
	 * newly unmapped blocks will not be allocated before the end of
	 * the function.
	 */
Joe Thornber's avatar
Joe Thornber committed
1088
	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089
	if (r) {
Joe Thornber's avatar
Joe Thornber committed
1090
		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091
		bio_io_error(m->bio);
1092
1093
1094
1095
		cell_defer_no_holder(tc, m->cell);
		mempool_free(m, pool->mapping_pool);
		return;
	}
Joe Thornber's avatar
Joe Thornber committed
1096

1097
1098
1099
1100
1101
	discard_parent = bio_alloc(GFP_NOIO, 1);
	if (!discard_parent) {
		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
		       dm_device_name(tc->pool->pool_md));
		queue_passdown_pt2(m);
1102
1103

	} else {
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
		discard_parent->bi_end_io = passdown_endio;
		discard_parent->bi_private = m;

		if (m->maybe_shared)
			passdown_double_checking_shared_status(m, discard_parent);
		else {
			struct discard_op op;

			begin_discard(&op, tc, discard_parent);
			r = issue_discard(&op, m->data_block, data_end);
			end_discard(&op, r);
		}
1116
	}
1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
	/*
	 * Increment the unmapped blocks.  This prevents a race between the
	 * passdown io and reallocation of freed blocks.
	 */
	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
	if (r) {
		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
		bio_io_error(m->bio);
		cell_defer_no_holder(tc, m->cell);
		mempool_free(m, pool->mapping_pool);
		return;
	}
}

static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
{
	int r;
	struct thin_c *tc = m->tc;
	struct pool *pool = tc->pool;

	/*
	 * The passdown has completed, so now we can decrement all those
	 * unmapped blocks.
	 */
	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
				   m->data_block + (m->virt_end - m->virt_begin));
	if (r) {
		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
		bio_io_error(m->bio);
	} else
		bio_endio(m->bio);

Joe Thornber's avatar
Joe Thornber committed
1150
1151
	cell_defer_no_holder(tc, m->cell);
	mempool_free(m, pool->mapping_pool);
1152
1153
}

Joe Thornber's avatar
Joe Thornber committed
1154
static void process_prepared(struct pool *pool, struct list_head *head,
1155
			     process_mapping_fn *fn)
1156
1157
1158
{
	unsigned long flags;
	struct list_head maps;
Mike Snitzer's avatar
Mike Snitzer committed
1159
	struct dm_thin_new_mapping *m, *tmp;
1160
1161
1162

	INIT_LIST_HEAD(&maps);
	spin_lock_irqsave(&pool->lock, flags);
Joe Thornber's avatar
Joe Thornber committed
1163
	list_splice_init(head, &maps);
1164
1165
1166
	spin_unlock_irqrestore(&pool->lock, flags);

	list_for_each_entry_safe(m, tmp, &maps, list)
1167
		(*fn)(m);
1168
1169
1170
1171
1172
}

/*
 * Deferred bio jobs.
 */
Joe Thornber's avatar
Joe Thornber committed
1173
static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174
{
1175
1176
	return bio->bi_iter.bi_size ==
		(pool->sectors_per_block << SECTOR_SHIFT);
Joe Thornber's avatar
Joe Thornber committed
1177
1178
1179
1180
1181
1182
}

static int io_overwrites_block(struct pool *pool, struct bio *bio)
{
	return (bio_data_dir(bio) == WRITE) &&
		io_overlaps_block(pool, bio);
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
}

static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
			       bio_end_io_t *fn)
{
	*save = bio->bi_end_io;
	bio->bi_end_io = fn;
}

static int ensure_next_mapping(struct pool *pool)
{
	if (pool->next_mapping)
		return 0;

	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);

	return pool->next_mapping ? 0 : -ENOMEM;
}

Mike Snitzer's avatar
Mike Snitzer committed
1202
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203
{
1204
	struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206
1207

	BUG_ON(!pool->next_mapping);

1208
1209
1210
1211
	memset(m, 0, sizeof(struct dm_thin_new_mapping));
	INIT_LIST_HEAD(&m->list);
	m->bio = NULL;

1212
1213
	pool->next_mapping = NULL;

1214
	return m;
1215
1216
}

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
		    sector_t begin, sector_t end)
{
	int r;
	struct dm_io_region to;

	to.bdev = tc->pool_dev->bdev;
	to.sector = begin;
	to.count = end - begin;

	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
	if (r < 0) {
		DMERR_LIMIT("dm_kcopyd_zero() failed");
		copy_complete(1, 1, m);
	}
}

1234
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
Joe Thornber's avatar
Joe Thornber committed
1235
				      dm_block_t data_begin,
1236
1237
1238
1239
1240
1241
1242
1243
1244
				      struct dm_thin_new_mapping *m)
{
	struct pool *pool = tc->pool;
	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));

	h->overwrite_mapping = m;
	m->bio = bio;
	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
	inc_all_io_entry(pool, bio);
Joe Thornber's avatar
Joe Thornber committed
1245
	remap_and_issue(tc, bio, data_begin);
1246
1247
}

1248
1249
1250
/*
 * A partial copy also needs to zero the uncopied region.
 */
1251
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252
1253
			  struct dm_dev *origin, dm_block_t data_origin,
			  dm_block_t data_dest,
1254
1255
			  struct dm_bio_prison_cell *cell, struct bio *bio,
			  sector_t len)
1256
1257
1258
{
	int r;
	struct pool *pool = tc->pool;
Mike Snitzer's avatar
Mike Snitzer committed
1259
	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261

	m->tc = tc;
Joe Thornber's avatar
Joe Thornber committed
1262
1263
	m->virt_begin = virt_block;
	m->virt_end = virt_block + 1u;
1264
1265
1266
	m->data_block = data_dest;
	m->cell = cell;

1267
1268
1269
1270
1271
1272
1273
	/*
	 * quiesce action + copy action + an extra reference held for the
	 * duration of this function (we may need to inc later for a
	 * partial zero).
	 */
	atomic_set(&m->prepare_actions, 3);

1274
	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275
		complete_mapping_preparation(m); /* already quiesced */
1276
1277
1278
1279
1280
1281
1282

	/*
	 * IO to pool_dev remaps to the pool target's data_dev.
	 *
	 * If the whole block of data is being overwritten, we can issue the
	 * bio immediately. Otherwise we use kcopyd to clone the data first.
	 */
1283
1284
1285
	if (io_overwrites_block(pool, bio))
		remap_and_issue_overwrite(tc, bio, data_dest, m);
	else {
1286
1287
		struct dm_io_region from, to;

1288
		from.bdev = origin->bdev;
1289
		from.sector = data_origin * pool->sectors_per_block;
1290
		from.count = len;
1291
1292
1293

		to.bdev = tc->pool_dev->bdev;
		to.sector = data_dest * pool->sectors_per_block;
1294
		to.count = len;
1295
1296
1297
1298

		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
				   0, copy_complete