Commit b39de277 authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge tag 'spi-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "There's only one big change in this release but it's a very big
  change: Geert Uytterhoeven has implemented support for SPI slave mode.

  This feature has been on the cards since the subsystem was originally
  merged back in the mists of time so it's great that Geert stepped up
  and finally implemented it.

   - SPI slave support, together with wholesale renaming of SPI
     controllers from master to controller which went surprisingly
     smoothly. This is already used with Renesas SoCs and support is in
     the works for i.MX too.

   - New drivers for Meson SPICC and ST STM32"

* tag 'spi-v4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (57 commits)
  spi: loopback-test: Fix kfree() NULL pointer error.
  spi: loopback-test: fix spelling mistake: "reruning" -> "rerunning"
  spi: sirf: fix spelling mistake: "registerred" -> "registered"
  spi: stm32: fix potential dereference null return value
  spi: stm32: enhance DMA error management
  spi: stm32: add runtime PM support
  spi: stm32: use normal conditional statements instead of ternary operator
  spi: stm32: replace st, spi-midi with st, spi-midi-ns to fit bindings
  spi: stm32: fix example with st, spi-midi-ns property
  spi: stm32: fix compatible to fit with new bindings
  spi: stm32: use SoC specific compatible
  spi: rockchip: Disable Runtime PM when chip select is asserted
  spi: rockchip: Set GPIO_SS flag to enable Slave Select with GPIO CS
  spi: atmel: fix corrupted data issue on SAM9 family SoCs
  spi: stm32: fix error check on mbr being -ve
  spi: add driver for STM32 SPI controller
  spi: Document the STM32 SPI bindings
  spi/bcm63xx: Fix checkpatch warnings
  spi: imx: Check for allocation failure earlier
  spi: mediatek: add spi support for mt2712 IC
  ...
parents d62eb5ed 082f6968
......@@ -38,6 +38,8 @@ Optional properties:
specifiers, one for transmission, and one for
reception.
- dma-names : Must contain a list of two DMA names, "tx" and "rx".
- spi-slave : Empty property indicating the SPI controller is used
in slave mode.
- renesas,dtdl : delay sync signal (setup) in transmit mode.
Must contain one of the following values:
0 (no bit delay)
......
SPI (Serial Peripheral Interface) busses
SPI busses can be described with a node for the SPI master device
and a set of child nodes for each SPI slave on the bus. For this
discussion, it is assumed that the system's SPI controller is in
SPI master mode. This binding does not describe SPI controllers
in slave mode.
SPI busses can be described with a node for the SPI controller device
and a set of child nodes for each SPI slave on the bus. The system's SPI
controller may be described for use in SPI master mode or in SPI slave mode,
but not for both at the same time.
The SPI master node requires the following properties:
The SPI controller node requires the following properties:
- compatible - Name of SPI bus controller following generic names
recommended practice.
In master mode, the SPI controller node requires the following additional
properties:
- #address-cells - number of cells required to define a chip select
address on the SPI bus.
- #size-cells - should be zero.
- compatible - name of SPI bus controller following generic names
recommended practice.
In slave mode, the SPI controller node requires one additional property:
- spi-slave - Empty property.
No other properties are required in the SPI bus node. It is assumed
that a driver for an SPI bus device will understand that it is an SPI bus.
However, the binding does not attempt to define the specific method for
......@@ -21,7 +27,7 @@ assumption that board specific platform code will be used to manage
chip selects. Individual drivers can define additional properties to
support describing the chip select layout.
Optional properties:
Optional properties (master mode only):
- cs-gpios - gpios chip select.
- num-cs - total number of chipselects.
......@@ -41,28 +47,36 @@ cs1 : native
cs2 : &gpio1 1 0
cs3 : &gpio1 2 0
SPI slave nodes must be children of the SPI master node and can
contain the following properties.
- reg - (required) chip select address of device.
- compatible - (required) name of SPI device following generic names
recommended practice.
- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz.
- spi-cpol - (optional) Empty property indicating device requires
inverse clock polarity (CPOL) mode.
- spi-cpha - (optional) Empty property indicating device requires
shifted clock phase (CPHA) mode.
- spi-cs-high - (optional) Empty property indicating device requires
chip select active high.
- spi-3wire - (optional) Empty property indicating device requires
3-wire mode.
- spi-lsb-first - (optional) Empty property indicating device requires
LSB first mode.
- spi-tx-bus-width - (optional) The bus width (number of data wires) that is
used for MOSI. Defaults to 1 if not present.
- spi-rx-bus-width - (optional) The bus width (number of data wires) that is
used for MISO. Defaults to 1 if not present.
- spi-rx-delay-us - (optional) Microsecond delay after a read transfer.
- spi-tx-delay-us - (optional) Microsecond delay after a write transfer.
SPI slave nodes must be children of the SPI controller node.
In master mode, one or more slave nodes (up to the number of chip selects) can
be present. Required properties are:
- compatible - Name of SPI device following generic names recommended
practice.
- reg - Chip select address of device.
- spi-max-frequency - Maximum SPI clocking speed of device in Hz.
In slave mode, the (single) slave node is optional.
If present, it must be called "slave". Required properties are:
- compatible - Name of SPI device following generic names recommended
practice.
All slave nodes can contain the following optional properties:
- spi-cpol - Empty property indicating device requires inverse clock
polarity (CPOL) mode.
- spi-cpha - Empty property indicating device requires shifted clock
phase (CPHA) mode.
- spi-cs-high - Empty property indicating device requires chip select
active high.
- spi-3wire - Empty property indicating device requires 3-wire mode.
- spi-lsb-first - Empty property indicating device requires LSB first mode.
- spi-tx-bus-width - The bus width (number of data wires) that is used for MOSI.
Defaults to 1 if not present.
- spi-rx-bus-width - The bus width (number of data wires) that is used for MISO.
Defaults to 1 if not present.
- spi-rx-delay-us - Microsecond delay after a read transfer.
- spi-tx-delay-us - Microsecond delay after a write transfer.
Some SPI controllers and devices support Dual and Quad SPI transfer mode.
It allows data in the SPI system to be transferred using 2 wires (DUAL) or 4
......
......@@ -20,3 +20,34 @@ Required properties:
#address-cells = <1>;
#size-cells = <0>;
};
* SPICC (SPI Communication Controller)
The Meson SPICC is generic SPI controller for general purpose Full-Duplex
communications with dedicated 16 words RX/TX PIO FIFOs.
Required properties:
- compatible: should be "amlogic,meson-gx-spicc" on Amlogic GX SoCs.
- reg: physical base address and length of the controller registers
- interrupts: The interrupt specifier
- clock-names: Must contain "core"
- clocks: phandle of the input clock for the baud rate generator
- #address-cells: should be 1
- #size-cells: should be 0
Optional properties:
- resets: phandle of the internal reset line
See ../spi/spi-bus.txt for more details on SPI bus master and slave devices
required and optional properties.
Example :
spi@c1108d80 {
compatible = "amlogic,meson-gx-spicc";
reg = <0xc1108d80 0x80>;
interrupts = <GIC_SPI 112 IRQ_TYPE_LEVEL_HIGH>;
clock-names = "core";
clocks = <&clk81>;
#address-cells = <1>;
#size-cells = <0>;
};
......@@ -3,7 +3,9 @@ Binding for MTK SPI controller
Required properties:
- compatible: should be one of the following.
- mediatek,mt2701-spi: for mt2701 platforms
- mediatek,mt2712-spi: for mt2712 platforms
- mediatek,mt6589-spi: for mt6589 platforms
- mediatek,mt7622-spi: for mt7622 platforms
- mediatek,mt8135-spi: for mt8135 platforms
- mediatek,mt8173-spi: for mt8173 platforms
......
STMicroelectronics STM32 SPI Controller
The STM32 SPI controller is used to communicate with external devices using
the Serial Peripheral Interface. It supports full-duplex, half-duplex and
simplex synchronous serial communication with external devices. It supports
from 4 to 32-bit data size. Although it can be configured as master or slave,
only master is supported by the driver.
Required properties:
- compatible: Must be "st,stm32h7-spi".
- reg: Offset and length of the device's register set.
- interrupts: Must contain the interrupt id.
- clocks: Must contain an entry for spiclk (which feeds the internal clock
generator).
- #address-cells: Number of cells required to define a chip select address.
- #size-cells: Should be zero.
Optional properties:
- resets: Must contain the phandle to the reset controller.
- A pinctrl state named "default" may be defined to set pins in mode of
operation for SPI transfer.
- dmas: DMA specifiers for tx and rx dma. DMA fifo mode must be used. See the
STM32 DMA bindings, Documentation/devicetree/bindings/dma/stm32-dma.txt.
- dma-names: DMA request names should include "tx" and "rx" if present.
- cs-gpios: list of GPIO chip selects. See the SPI bus bindings,
Documentation/devicetree/bindings/spi/spi-bus.txt
Child nodes represent devices on the SPI bus
See ../spi/spi-bus.txt
Optional properties:
- st,spi-midi-ns: (Master Inter-Data Idleness) minimum time delay in
nanoseconds inserted between two consecutive data frames.
Example:
spi2: spi@40003800 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "st,stm32h7-spi";
reg = <0x40003800 0x400>;
interrupts = <36>;
clocks = <&rcc SPI2_CK>;
resets = <&rcc 1166>;
dmas = <&dmamux1 0 39 0x400 0x01>,
<&dmamux1 1 40 0x400 0x01>;
dma-names = "rx", "tx";
pinctrl-0 = <&spi2_pins_b>;
pinctrl-names = "default";
cs-gpios = <&gpioa 11 0>;
aardvark@0 {
compatible = "totalphase,aardvark";
reg = <0>;
spi-max-frequency = <4000000>;
st,spi-midi-ns = <4000>;
};
};
......@@ -62,8 +62,8 @@ chips described as using "three wire" signaling: SCK, data, nCSx.
(That data line is sometimes called MOMI or SISO.)
Microcontrollers often support both master and slave sides of the SPI
protocol. This document (and Linux) currently only supports the master
side of SPI interactions.
protocol. This document (and Linux) supports both the master and slave
sides of SPI interactions.
Who uses it? On what kinds of systems?
......@@ -154,9 +154,8 @@ control audio interfaces, present touchscreen sensors as input interfaces,
or monitor temperature and voltage levels during industrial processing.
And those might all be sharing the same controller driver.
A "struct spi_device" encapsulates the master-side interface between
those two types of driver. At this writing, Linux has no slave side
programming interface.
A "struct spi_device" encapsulates the controller-side interface between
those two types of drivers.
There is a minimal core of SPI programming interfaces, focussing on
using the driver model to connect controller and protocol drivers using
......@@ -177,10 +176,24 @@ shows up in sysfs in several locations:
/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
/sys/class/spi_master/spiB ... symlink (or actual device node) to
a logical node which could hold class related state for the
controller managing bus "B". All spiB.* devices share one
a logical node which could hold class related state for the SPI
master controller managing bus "B". All spiB.* devices share one
physical SPI bus segment, with SCLK, MOSI, and MISO.
/sys/devices/.../CTLR/slave ... virtual file for (un)registering the
slave device for an SPI slave controller.
Writing the driver name of an SPI slave handler to this file
registers the slave device; writing "(null)" unregisters the slave
device.
Reading from this file shows the name of the slave device ("(null)"
if not registered).
/sys/class/spi_slave/spiB ... symlink (or actual device node) to
a logical node which could hold class related state for the SPI
slave controller on bus "B". When registered, a single spiB.*
device is present here, possible sharing the physical SPI bus
segment with other SPI slave devices.
Note that the actual location of the controller's class state depends
on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time,
the only class-specific state is the bus number ("B" in "spiB"), so
......
......@@ -393,6 +393,13 @@ config SPI_FSL_ESPI
From MPC8536, 85xx platform uses the controller, and all P10xx,
P20xx, P30xx,P40xx, P50xx uses this controller.
config SPI_MESON_SPICC
tristate "Amlogic Meson SPICC controller"
depends on ARCH_MESON || COMPILE_TEST
help
This enables master mode support for the SPICC (SPI communication
controller) available in Amlogic Meson SoCs.
config SPI_MESON_SPIFC
tristate "Amlogic Meson SPIFC controller"
depends on ARCH_MESON || COMPILE_TEST
......@@ -457,6 +464,7 @@ config SPI_OMAP24XX
config SPI_TI_QSPI
tristate "DRA7xxx QSPI controller support"
depends on HAS_DMA
depends on ARCH_OMAP2PLUS || COMPILE_TEST
help
QSPI master controller for DRA7xxx used for flash devices.
......@@ -619,6 +627,16 @@ config SPI_SIRF
help
SPI driver for CSR SiRFprimaII SoCs
config SPI_STM32
tristate "STMicroelectronics STM32 SPI controller"
depends on ARCH_STM32 || COMPILE_TEST
help
SPI driver for STMicroelectonics STM32 SoCs.
STM32 SPI controller supports DMA and PIO modes. When DMA
is not available, the driver automatically falls back to
PIO mode.
config SPI_ST_SSC4
tristate "STMicroelectronics SPI SSC-based driver"
depends on ARCH_STI || COMPILE_TEST
......@@ -784,6 +802,30 @@ config SPI_TLE62X0
endif # SPI_MASTER
# (slave support would go here)
#
# SLAVE side ... listening to other SPI masters
#
config SPI_SLAVE
bool "SPI slave protocol handlers"
help
If your system has a slave-capable SPI controller, you can enable
slave protocol handlers.
if SPI_SLAVE
config SPI_SLAVE_TIME
tristate "SPI slave handler reporting boot up time"
help
SPI slave handler responding with the time of reception of the last
SPI message.
config SPI_SLAVE_SYSTEM_CONTROL
tristate "SPI slave handler controlling system state"
help
SPI slave handler to allow remote control of system reboot, power
off, halt, and suspend.
endif # SPI_SLAVE
endif # SPI
......@@ -53,6 +53,7 @@ obj-$(CONFIG_SPI_LANTIQ_SSC) += spi-lantiq-ssc.o
obj-$(CONFIG_SPI_JCORE) += spi-jcore.o
obj-$(CONFIG_SPI_LM70_LLP) += spi-lm70llp.o
obj-$(CONFIG_SPI_LP8841_RTC) += spi-lp8841-rtc.o
obj-$(CONFIG_SPI_MESON_SPICC) += spi-meson-spicc.o
obj-$(CONFIG_SPI_MESON_SPIFC) += spi-meson-spifc.o
obj-$(CONFIG_SPI_MPC512x_PSC) += spi-mpc512x-psc.o
obj-$(CONFIG_SPI_MPC52xx_PSC) += spi-mpc52xx-psc.o
......@@ -89,6 +90,7 @@ obj-$(CONFIG_SPI_SH_HSPI) += spi-sh-hspi.o
obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o
obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o
obj-$(CONFIG_SPI_SIRF) += spi-sirf.o
obj-$(CONFIG_SPI_STM32) += spi-stm32.o
obj-$(CONFIG_SPI_ST_SSC4) += spi-st-ssc4.o
obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o
obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o
......@@ -105,3 +107,7 @@ obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o
obj-$(CONFIG_SPI_XLP) += spi-xlp.o
obj-$(CONFIG_SPI_XTENSA_XTFPGA) += spi-xtensa-xtfpga.o
obj-$(CONFIG_SPI_ZYNQMP_GQSPI) += spi-zynqmp-gqspi.o
# SPI slave protocol handlers
obj-$(CONFIG_SPI_SLAVE_TIME) += spi-slave-time.o
obj-$(CONFIG_SPI_SLAVE_SYSTEM_CONTROL) += spi-slave-system-control.o
......@@ -269,6 +269,7 @@ struct atmel_spi_caps {
bool is_spi2;
bool has_wdrbt;
bool has_dma_support;
bool has_pdc_support;
};
/*
......@@ -1422,11 +1423,31 @@ static void atmel_get_caps(struct atmel_spi *as)
unsigned int version;
version = atmel_get_version(as);
dev_info(&as->pdev->dev, "version: 0x%x\n", version);
as->caps.is_spi2 = version > 0x121;
as->caps.has_wdrbt = version >= 0x210;
#ifdef CONFIG_SOC_SAM_V4_V5
/*
* Atmel SoCs based on ARM9 (SAM9x) cores should not use spi_map_buf()
* since this later function tries to map buffers with dma_map_sg()
* even if they have not been allocated inside DMA-safe areas.
* On SoCs based on Cortex A5 (SAMA5Dx), it works anyway because for
* those ARM cores, the data cache follows the PIPT model.
* Also the L2 cache controller of SAMA5D2 uses the PIPT model too.
* In case of PIPT caches, there cannot be cache aliases.
* However on ARM9 cores, the data cache follows the VIVT model, hence
* the cache aliases issue can occur when buffers are allocated from
* DMA-unsafe areas, by vmalloc() for instance, where cache coherency is
* not taken into account or at least not handled completely (cache
* lines of aliases are not invalidated).
* This is not a theorical issue: it was reproduced when trying to mount
* a UBI file-system on a at91sam9g35ek board.
*/
as->caps.has_dma_support = false;
#else
as->caps.has_dma_support = version >= 0x212;
#endif
as->caps.has_pdc_support = version < 0x212;
}
/*-------------------------------------------------------------------------*/
......@@ -1567,7 +1588,7 @@ static int atmel_spi_probe(struct platform_device *pdev)
} else if (ret == -EPROBE_DEFER) {
return ret;
}
} else {
} else if (as->caps.has_pdc_support) {
as->use_pdc = true;
}
......@@ -1609,8 +1630,9 @@ static int atmel_spi_probe(struct platform_device *pdev)
goto out_free_dma;
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
(unsigned long)regs->start, irq);
dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
atmel_get_version(as), (unsigned long)regs->start,
irq);
return 0;
......
......@@ -484,6 +484,7 @@ static const struct of_device_id bcm63xx_hsspi_of_match[] = {
{ .compatible = "brcm,bcm6328-hsspi", },
{ },
};
MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match);
static struct platform_driver bcm63xx_hsspi_driver = {
.driver = {
......
......@@ -147,7 +147,7 @@ struct bcm63xx_spi {
/* Platform data */
const unsigned long *reg_offsets;
unsigned fifo_size;
unsigned int fifo_size;
unsigned int msg_type_shift;
unsigned int msg_ctl_width;
......@@ -191,7 +191,7 @@ static inline void bcm_spi_writew(struct bcm63xx_spi *bs,
#endif
}
static const unsigned bcm63xx_spi_freq_table[SPI_CLK_MASK][2] = {
static const unsigned int bcm63xx_spi_freq_table[SPI_CLK_MASK][2] = {
{ 20000000, SPI_CLK_20MHZ },
{ 12500000, SPI_CLK_12_50MHZ },
{ 6250000, SPI_CLK_6_250MHZ },
......
......@@ -873,9 +873,8 @@ static int spi_davinci_get_pdata(struct platform_device *pdev,
return 0;
}
#else
static struct davinci_spi_platform_data
*spi_davinci_get_pdata(struct platform_device *pdev,
struct davinci_spi *dspi)
static int spi_davinci_get_pdata(struct platform_device *pdev,
struct davinci_spi *dspi)
{
return -ENODEV;
}
......@@ -965,7 +964,9 @@ static int davinci_spi_probe(struct platform_device *pdev)
ret = -ENODEV;
goto free_master;
}
clk_prepare_enable(dspi->clk);
ret = clk_prepare_enable(dspi->clk);
if (ret)
goto free_master;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
......
......@@ -1032,7 +1032,8 @@ static int dspi_probe(struct platform_device *pdev)
goto out_master_put;
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
if (dspi_request_dma(dspi, res->start)) {
ret = dspi_request_dma(dspi, res->start);
if (ret < 0) {
dev_err(&pdev->dev, "can't get dma channels\n");
goto out_clk_put;
}
......
......@@ -56,10 +56,6 @@
/* The maximum bytes that a sdma BD can transfer.*/
#define MAX_SDMA_BD_BYTES (1 << 15)
struct spi_imx_config {
unsigned int speed_hz;
unsigned int bpw;
};
enum spi_imx_devtype {
IMX1_CSPI,
......@@ -74,7 +70,7 @@ struct spi_imx_data;
struct spi_imx_devtype_data {
void (*intctrl)(struct spi_imx_data *, int);
int (*config)(struct spi_device *, struct spi_imx_config *);
int (*config)(struct spi_device *);
void (*trigger)(struct spi_imx_data *);
int (*rx_available)(struct spi_imx_data *);
void (*reset)(struct spi_imx_data *);
......@@ -94,7 +90,8 @@ struct spi_imx_data {
unsigned long spi_clk;
unsigned int spi_bus_clk;
unsigned int bytes_per_word;
unsigned int speed_hz;
unsigned int bits_per_word;
unsigned int spi_drctl;
unsigned int count;
......@@ -203,34 +200,27 @@ static unsigned int spi_imx_clkdiv_2(unsigned int fin,
return i;
}
static int spi_imx_bytes_per_word(const int bpw)
static int spi_imx_bytes_per_word(const int bits_per_word)
{
return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
return DIV_ROUND_UP(bits_per_word, BITS_PER_BYTE);
}
static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
unsigned int bpw, i;
unsigned int bytes_per_word, i;
if (!master->dma_rx)
return false;
if (!transfer)
return false;
bpw = transfer->bits_per_word;
if (!bpw)
bpw = spi->bits_per_word;
bpw = spi_imx_bytes_per_word(bpw);
bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
if (bpw != 1 && bpw != 2 && bpw != 4)
if (bytes_per_word != 1 && bytes_per_word != 2 && bytes_per_word != 4)
return false;
for (i = spi_imx_get_fifosize(spi_imx) / 2; i > 0; i--) {
if (!(transfer->len % (i * bpw)))
if (!(transfer->len % (i * bytes_per_word)))
break;
}
......@@ -340,12 +330,11 @@ static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
}
static int mx51_ecspi_config(struct spi_device *spi,
struct spi_imx_config *config)
static int mx51_ecspi_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
u32 clk = config->speed_hz, delay, reg;
u32 clk = spi_imx->speed_hz, delay, reg;
u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
/*
......@@ -364,13 +353,13 @@ static int mx51_ecspi_config(struct spi_device *spi,
ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
/* set clock speed */
ctrl |= mx51_ecspi_clkdiv(spi_imx, config->speed_hz, &clk);
ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->speed_hz, &clk);
spi_imx->spi_bus_clk = clk;
/* set chip select to use */
ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
ctrl |= (config->bpw - 1) << MX51_ECSPI_CTRL_BL_OFFSET;
ctrl |= (spi_imx->bits_per_word - 1) << MX51_ECSPI_CTRL_BL_OFFSET;
cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
......@@ -501,21 +490,21 @@ static void mx31_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx31_config(struct spi_device *spi, struct spi_imx_config *config)
static int mx31_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
unsigned int clk;
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, config->speed_hz, &clk) <<
reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->speed_hz, &clk) <<
MX31_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
if (is_imx35_cspi(spi_imx)) {
reg |= (config->bpw - 1) << MX35_CSPICTRL_BL_SHIFT;
reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
reg |= MX31_CSPICTRL_SSCTL;
} else {
reg |= (config->bpw - 1) << MX31_CSPICTRL_BC_SHIFT;
reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
}
if (spi->mode & SPI_CPHA)
......@@ -597,18 +586,18 @@ static void mx21_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}
static int mx21_config(struct spi_device *spi, struct spi_imx_config *config)
static int mx21_config(struct spi_device *spi)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
unsigned int clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max, &clk)
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->speed_hz, max, &clk)
<< MX21_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= config->bpw - 1;
reg |= spi_imx->bits_per_word - 1;
if (spi->mode & SPI_CPHA)
reg |= MX21_CSPICTRL_PHA;
......@@ -666,17 +655,17 @@ static void mx1_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MXC_CSPICTRL);
}