hugetlb.c 59.3 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
Linus Torvalds's avatar
Linus Torvalds committed
11
12
#include <linux/sysctl.h>
#include <linux/highmem.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
13
#include <linux/mmu_notifier.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

David Gibson's avatar
David Gibson committed
22
23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
David Gibson's avatar
David Gibson committed
25
26

#include <linux/hugetlb.h>
27
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
28
29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30
31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33
34
35
36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37
38
__initdata LIST_HEAD(huge_boot_pages);

39
40
41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43
44
45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47
48
49
50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52
53
54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55
56
57
58
59
60
61
62
63
64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211
212
213
214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215
216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218
219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220
221
}

222
223
224
225
226
227
228
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
229
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
230

231
232
233
234
235
236
237
238
239
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
240
241
242
243
244
245
246
247
248
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
249
 */
250
251
252
253
254
255
256
257
258
259
260
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

261
262
263
264
265
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

266
static struct resv_map *resv_map_alloc(void)
267
268
269
270
271
272
273
274
275
276
277
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

278
static void resv_map_release(struct kref *ref)
279
280
281
282
283
284
285
286
287
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288
289
290
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
291
292
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
293
	return NULL;
294
295
}

296
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297
298
299
300
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

301
302
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
303
304
305
306
307
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
308
309
310
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
311
312
313
314
315
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
316
317

	return (get_vma_private_data(vma) & flag) != 0;
318
319
320
}

/* Decrement the reserved pages in the hugepage pool by one */
321
322
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
323
{
324
325
326
	if (vma->vm_flags & VM_NORESERVE)
		return;

327
328
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
329
		h->resv_huge_pages--;
330
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331
332
333
334
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
335
		h->resv_huge_pages--;
336
337
338
	}
}

339
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340
341
342
343
344
345
346
347
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
348
static int vma_has_reserves(struct vm_area_struct *vma)
349
350
{
	if (vma->vm_flags & VM_SHARED)
351
352
353
354
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
355
356
}

357
358
359
360
361
362
363
364
365
366
367
368
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
369
370
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
371
372
373
{
	int i;

374
375
376
	if (unlikely(sz > MAX_ORDER_NR_PAGES))
		return clear_gigantic_page(page, addr, sz);

377
	might_sleep();
378
	for (i = 0; i < sz/PAGE_SIZE; i++) {
379
		cond_resched();
380
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
381
382
383
	}
}

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
401
static void copy_huge_page(struct page *dst, struct page *src,
402
			   unsigned long addr, struct vm_area_struct *vma)
403
404
{
	int i;
405
	struct hstate *h = hstate_vma(vma);
406

407
408
409
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
		return copy_gigantic_page(dst, src, addr, vma);

410
	might_sleep();
411
	for (i = 0; i < pages_per_huge_page(h); i++) {
412
		cond_resched();
413
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
414
415
416
	}
}

417
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
418
419
{
	int nid = page_to_nid(page);
420
421
422
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
423
424
}

425
static struct page *dequeue_huge_page(struct hstate *h)
426
427
428
429
430
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
431
432
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
433
434
					  struct page, lru);
			list_del(&page->lru);
435
436
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
437
438
439
440
441
442
			break;
		}
	}
	return page;
}

443
444
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
445
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
446
{
447
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
448
	struct page *page = NULL;
449
	struct mempolicy *mpol;
450
	nodemask_t *nodemask;
451
	struct zonelist *zonelist = huge_zonelist(vma, address,
452
					htlb_alloc_mask, &mpol, &nodemask);
453
454
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
455

456
457
458
459
460
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
461
	if (!vma_has_reserves(vma) &&
462
			h->free_huge_pages - h->resv_huge_pages == 0)
463
464
		return NULL;

465
	/* If reserves cannot be used, ensure enough pages are in the pool */
466
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
467
468
		return NULL;

469
470
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
471
472
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
473
474
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
475
476
					  struct page, lru);
			list_del(&page->lru);
477
478
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
479
480

			if (!avoid_reserve)
481
				decrement_hugepage_resv_vma(h, vma);
482

Ken Chen's avatar
Ken Chen committed
483
			break;
484
		}
Linus Torvalds's avatar
Linus Torvalds committed
485
	}
486
	mpol_cond_put(mpol);
Linus Torvalds's avatar
Linus Torvalds committed
487
488
489
	return page;
}

490
static void update_and_free_page(struct hstate *h, struct page *page)
491
492
{
	int i;
493

494
495
	VM_BUG_ON(h->order >= MAX_ORDER);

496
497
498
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
499
500
501
502
503
504
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
505
	arch_release_hugepage(page);
506
	__free_pages(page, huge_page_order(h));
507
508
}

509
510
511
512
513
514
515
516
517
518
519
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

520
521
static void free_huge_page(struct page *page)
{
522
523
524
525
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
526
	struct hstate *h = page_hstate(page);
527
	int nid = page_to_nid(page);
528
	struct address_space *mapping;
529

530
	mapping = (struct address_space *) page_private(page);
531
	set_page_private(page, 0);
532
	BUG_ON(page_count(page));
533
534
535
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
536
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
537
538
539
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
540
	} else {
541
		enqueue_huge_page(h, page);
542
	}
543
	spin_unlock(&hugetlb_lock);
544
	if (mapping)
545
		hugetlb_put_quota(mapping, 1);
546
547
}

548
549
550
551
552
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
553
static int adjust_pool_surplus(struct hstate *h, int delta)
554
555
556
557
558
559
560
561
562
563
564
565
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
566
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
567
568
			continue;
		/* Surplus cannot exceed the total number of pages */
569
570
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
571
572
			continue;

573
574
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
575
576
577
578
579
580
581
582
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

583
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
584
585
586
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
587
588
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
589
590
591
592
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

593
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
594
595
{
	struct page *page;
596

597
598
599
	if (h->order >= MAX_ORDER)
		return NULL;

600
	page = alloc_pages_node(nid,
601
602
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
603
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
604
	if (page) {
605
		if (arch_prepare_hugepage(page)) {
606
			__free_pages(page, huge_page_order(h));
607
			return NULL;
608
		}
609
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
610
	}
611
612
613
614

	return page;
}

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

636
static int alloc_fresh_huge_page(struct hstate *h)
637
638
639
640
641
642
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

643
	start_nid = h->hugetlb_next_nid;
644
645

	do {
646
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
647
648
		if (page)
			ret = 1;
649
		next_nid = hstate_next_node(h);
650
	} while (!page && h->hugetlb_next_nid != start_nid);
651

652
653
654
655
656
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

657
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
658
659
}

660
661
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
662
663
{
	struct page *page;
664
	unsigned int nid;
665

666
667
668
	if (h->order >= MAX_ORDER)
		return NULL;

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
693
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
694
695
696
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
697
698
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
699
700
701
	}
	spin_unlock(&hugetlb_lock);

702
703
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
704
					huge_page_order(h));
705

706
707
708
709
710
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

711
	spin_lock(&hugetlb_lock);
712
	if (page) {
713
714
715
716
717
718
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
719
		nid = page_to_nid(page);
720
		set_compound_page_dtor(page, free_huge_page);
721
722
723
		/*
		 * We incremented the global counters already
		 */
724
725
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
726
		__count_vm_event(HTLB_BUDDY_PGALLOC);
727
	} else {
728
729
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
730
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
731
	}
732
	spin_unlock(&hugetlb_lock);
733
734
735
736

	return page;
}

737
738
739
740
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
741
static int gather_surplus_pages(struct hstate *h, int delta)
742
743
744
745
746
747
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

748
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
749
	if (needed <= 0) {
750
		h->resv_huge_pages += delta;
751
		return 0;
752
	}
753
754
755
756
757
758
759
760

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
761
		page = alloc_buddy_huge_page(h, NULL, 0);
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
782
783
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
784
785
786
787
788
789
790
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
791
792
793
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
794
795
	 */
	needed += allocated;
796
	h->resv_huge_pages += delta;
797
798
	ret = 0;
free:
799
	/* Free the needed pages to the hugetlb pool */
800
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
801
802
		if ((--needed) < 0)
			break;
803
		list_del(&page->lru);
804
		enqueue_huge_page(h, page);
805
806
807
808
809
810
811
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
812
			/*
813
814
815
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
816
817
818
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
819
			free_huge_page(page);
820
		}
821
		spin_lock(&hugetlb_lock);
822
823
824
825
826
827
828
829
830
831
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
832
833
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
834
835
836
837
838
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

839
840
841
842
843
844
845
846
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

847
	/* Uncommit the reservation */
848
	h->resv_huge_pages -= unused_resv_pages;
849

850
851
852
853
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

854
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
855

856
	while (remaining_iterations-- && nr_pages) {
857
858
859
860
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

861
		if (!h->surplus_huge_pages_node[nid])
862
863
			continue;

864
865
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
866
867
					  struct page, lru);
			list_del(&page->lru);
868
869
870
871
872
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
873
			nr_pages--;
874
			remaining_iterations = num_online_nodes();
875
876
877
878
		}
	}
}

879
880
881
882
883
884
885
886
887
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
888
889
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
890
891
892
893
894
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
895
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
896
897
898
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

899
900
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
901

902
903
	} else  {
		int err;
904
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
905
906
907
908
909
910
911
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
912
}
913
914
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
915
916
917
918
919
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
920
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
921
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
922
923

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
924
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
925
926
927
928
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
929
930
931
	}
}

932
static struct page *alloc_huge_page(struct vm_area_struct *vma,
933
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
934
{
935
	struct hstate *h = hstate_vma(vma);
936
	struct page *page;
937
938
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
939
	unsigned int chg;
940
941
942
943
944

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
945
946
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
947
	 */
948
	chg = vma_needs_reservation(h, vma, addr);
949
950
951
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
952
953
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
954
955

	spin_lock(&hugetlb_lock);
956
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
Linus Torvalds's avatar
Linus Torvalds committed
957
	spin_unlock(&hugetlb_lock);
958

Ken Chen's avatar
Ken Chen committed
959
	if (!page) {
960
		page = alloc_buddy_huge_page(h, vma, addr);
Ken Chen's avatar
Ken Chen committed
961
		if (!page) {
962
			hugetlb_put_quota(inode->i_mapping, chg);
Ken Chen's avatar
Ken Chen committed
963
964
965
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
966

967
968
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
969

970
	vma_commit_reservation(h, vma, addr);
971

972
	return page;
973
974
}

975
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1010
1011
1012
1013
1014
1015
1016
1017
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1028
		prep_compound_huge_page(page, h->order);
1029
1030
1031
1032
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1033
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
1034
1035
{
	unsigned long i;
1036

1037
	for (i = 0; i < h->max_huge_pages; ++i) {
1038
1039
1040
1041
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
Linus Torvalds's avatar
Linus Torvalds committed
1042
1043
			break;
	}
1044
	h->max_huge_pages = i;
1045
1046
1047
1048
1049
1050
1051
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1052
1053
1054
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1055
1056
1057
	}
}

Andi Kleen's avatar
Andi Kleen committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1069
1070
1071
1072
1073
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1074
1075
1076
1077
1078
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1079
1080
1081
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1082
#ifdef CONFIG_HIGHMEM
1083
static void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1084
{
1085
1086
	int i;

1087
1088
1089
	if (h->order >= MAX_ORDER)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
1090
1091
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1092
1093
1094
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1095
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1096
1097
1098
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1099
			update_and_free_page(h, page);
1100
1101
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1102
1103
1104
1105
		}
	}
}
#else
1106
static inline void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1107
1108
1109
1110
{
}
#endif

1111
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1112
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1113
{
1114
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1115

1116
1117
1118
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1119
1120
1121
1122
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1123
1124
1125
1126
1127
1128
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1129
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1130
	spin_lock(&hugetlb_lock);
1131
1132
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1133
1134
1135
			break;
	}

1136
	while (count > persistent_huge_pages(h)) {
1137
1138
1139
1140
1141
1142
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1143
		ret = alloc_fresh_huge_page(h);
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1156
1157
1158
1159
1160
1161
1162
1163
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1164
	 */
1165
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1166
	min_count = max(count, min_count);
1167
1168
1169
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
Linus Torvalds's avatar
Linus Torvalds committed
1170
1171
		if (!page)
			break;
1172
		update_and_free_page(h, page);
Linus Torvalds's avatar
Linus Torvalds committed
1173
	}
1174
1175
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1176
1177
1178
			break;
	}
out:
1179
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1180
	spin_unlock(&hugetlb_lock);
1181
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1182
1183
}

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
13