hugetlb.c 32.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

David Gibson's avatar
David Gibson committed
18
19
20
21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
23
24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
Linus Torvalds's avatar
Linus Torvalds committed
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34
35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38
39
40
41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43
44
45
46
47
48
49
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
50
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
51
52
53
54
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
55
			   unsigned long addr, struct vm_area_struct *vma)
56
57
58
59
60
61
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
62
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
63
64
65
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
66
67
68
69
70
71
72
73
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93
				unsigned long address)
Linus Torvalds's avatar
Linus Torvalds committed
94
{
95
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
96
	struct page *page = NULL;
97
	struct mempolicy *mpol;
98
	nodemask_t *nodemask;
99
	struct zonelist *zonelist = huge_zonelist(vma, address,
100
					htlb_alloc_mask, &mpol, &nodemask);
101
102
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
103

104
105
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
106
107
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108
109
110
111
112
113
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
114
115
			if (vma && vma->vm_flags & VM_MAYSHARE)
				resv_huge_pages--;
Ken Chen's avatar
Ken Chen committed
116
			break;
117
		}
Linus Torvalds's avatar
Linus Torvalds committed
118
	}
119
	mpol_free(mpol);	/* unref if mpol !NULL */
Linus Torvalds's avatar
Linus Torvalds committed
120
121
122
	return page;
}

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

138
139
static void free_huge_page(struct page *page)
{
140
	int nid = page_to_nid(page);
141
	struct address_space *mapping;
142

143
	mapping = (struct address_space *) page_private(page);
144
	set_page_private(page, 0);
145
	BUG_ON(page_count(page));
146
147
148
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
149
150
151
152
153
154
155
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
156
	spin_unlock(&hugetlb_lock);
157
	if (mapping)
158
		hugetlb_put_quota(mapping, 1);
159
160
}

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

196
static struct page *alloc_fresh_huge_page_node(int nid)
Linus Torvalds's avatar
Linus Torvalds committed
197
198
{
	struct page *page;
199

200
201
202
	page = alloc_pages_node(nid,
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
		HUGETLB_PAGE_ORDER);
Linus Torvalds's avatar
Linus Torvalds committed
203
	if (page) {
204
		set_compound_page_dtor(page, free_huge_page);
205
		spin_lock(&hugetlb_lock);
Linus Torvalds's avatar
Linus Torvalds committed
206
		nr_huge_pages++;
207
		nr_huge_pages_node[nid]++;
208
		spin_unlock(&hugetlb_lock);
209
		put_page(page); /* free it into the hugepage allocator */
Linus Torvalds's avatar
Linus Torvalds committed
210
	}
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
246
247
}

248
249
250
251
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
252
	unsigned int nid;
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

287
288
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
					HUGETLB_PAGE_ORDER);
289
290

	spin_lock(&hugetlb_lock);
291
	if (page) {
292
293
294
295
296
297
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
298
		nid = page_to_nid(page);
299
		set_compound_page_dtor(page, free_huge_page);
300
301
302
303
304
305
306
307
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
308
	}
309
	spin_unlock(&hugetlb_lock);
310
311
312
313

	return page;
}

314
315
316
317
318
319
320
321
322
323
324
325
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
326
327
	if (needed <= 0) {
		resv_huge_pages += delta;
328
		return 0;
329
	}
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
367
368
369
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
370
371
	 */
	needed += allocated;
372
	resv_huge_pages += delta;
373
374
375
376
377
378
	ret = 0;
free:
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
		list_del(&page->lru);
		if ((--needed) >= 0)
			enqueue_huge_page(page);
379
380
		else {
			/*
381
382
383
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
384
385
386
387
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
			spin_unlock(&hugetlb_lock);
388
			free_huge_page(page);
389
390
			spin_lock(&hugetlb_lock);
		}
391
392
393
394
395
396
397
398
399
400
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
401
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
402
403
404
405
406
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

407
408
409
410
411
412
413
414
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

415
416
417
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

418
419
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

420
	while (remaining_iterations-- && nr_pages) {
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
438
			remaining_iterations = num_online_nodes();
439
440
441
442
		}
	}
}

443
444
445

static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
						unsigned long addr)
Linus Torvalds's avatar
Linus Torvalds committed
446
{
447
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
448
449

	spin_lock(&hugetlb_lock);
450
	page = dequeue_huge_page_vma(vma, addr);
Linus Torvalds's avatar
Linus Torvalds committed
451
	spin_unlock(&hugetlb_lock);
452
	return page ? page : ERR_PTR(-VM_FAULT_OOM);
453
}
454

455
456
457
458
static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
						unsigned long addr)
{
	struct page *page = NULL;
459

460
461
462
	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
		return ERR_PTR(-VM_FAULT_SIGBUS);

463
464
	spin_lock(&hugetlb_lock);
	if (free_huge_pages > resv_huge_pages)
465
		page = dequeue_huge_page_vma(vma, addr);
466
	spin_unlock(&hugetlb_lock);
Ken Chen's avatar
Ken Chen committed
467
	if (!page) {
468
		page = alloc_buddy_huge_page(vma, addr);
Ken Chen's avatar
Ken Chen committed
469
470
471
472
473
474
		if (!page) {
			hugetlb_put_quota(vma->vm_file->f_mapping, 1);
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
	return page;
475
476
477
478
479
480
}

static struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr)
{
	struct page *page;
481
482
	struct address_space *mapping = vma->vm_file->f_mapping;

483
484
485
486
	if (vma->vm_flags & VM_MAYSHARE)
		page = alloc_huge_page_shared(vma, addr);
	else
		page = alloc_huge_page_private(vma, addr);
487
488

	if (!IS_ERR(page)) {
489
		set_page_refcounted(page);
490
		set_page_private(page, (unsigned long) mapping);
491
492
	}
	return page;
493
494
}

Linus Torvalds's avatar
Linus Torvalds committed
495
496
497
498
static int __init hugetlb_init(void)
{
	unsigned long i;

499
500
501
	if (HPAGE_SHIFT == 0)
		return 0;

Linus Torvalds's avatar
Linus Torvalds committed
502
503
504
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

505
506
	hugetlb_next_nid = first_node(node_online_map);

Linus Torvalds's avatar
Linus Torvalds committed
507
	for (i = 0; i < max_huge_pages; ++i) {
508
		if (!alloc_fresh_huge_page())
Linus Torvalds's avatar
Linus Torvalds committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

525
526
527
528
529
530
531
532
533
534
535
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

Linus Torvalds's avatar
Linus Torvalds committed
536
537
538
539
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
540
541
	int i;

Linus Torvalds's avatar
Linus Torvalds committed
542
543
544
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
545
546
			if (count >= nr_huge_pages)
				return;
Linus Torvalds's avatar
Linus Torvalds committed
547
548
549
550
551
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
552
			free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
553
554
555
556
557
558
559
560
561
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

562
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
Linus Torvalds's avatar
Linus Torvalds committed
563
564
static unsigned long set_max_huge_pages(unsigned long count)
{
565
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
566

567
568
569
570
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
571
572
573
574
575
576
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
577
	 */
Linus Torvalds's avatar
Linus Torvalds committed
578
	spin_lock(&hugetlb_lock);
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		int ret;
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
605
606
607
608
609
610
611
612
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
613
	 */
614
615
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
616
617
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
618
		struct page *page = dequeue_huge_page();
Linus Torvalds's avatar
Linus Torvalds committed
619
620
621
622
		if (!page)
			break;
		update_and_free_page(page);
	}
623
624
625
626
627
628
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
Linus Torvalds's avatar
Linus Torvalds committed
629
	spin_unlock(&hugetlb_lock);
630
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
631
632
633
634
635
636
637
638
639
640
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
641
642
643
644
645
646
647
648
649
650
651
652
653

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

654
655
656
657
658
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
659
660
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
661
662
663
664
	spin_unlock(&hugetlb_lock);
	return 0;
}

Linus Torvalds's avatar
Linus Torvalds committed
665
666
667
668
669
670
671
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
672
			"HugePages_Rsvd:  %5lu\n"
673
			"HugePages_Surp:  %5lu\n"
Linus Torvalds's avatar
Linus Torvalds committed
674
675
676
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
677
			resv_huge_pages,
678
			surplus_huge_pages,
Linus Torvalds's avatar
Linus Torvalds committed
679
680
681
682
683
684
685
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
686
687
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
Linus Torvalds's avatar
Linus Torvalds committed
688
		nid, nr_huge_pages_node[nid],
689
690
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
Linus Torvalds's avatar
Linus Torvalds committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
Nick Piggin's avatar
Nick Piggin committed
705
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
Linus Torvalds's avatar
Linus Torvalds committed
706
707
{
	BUG();
Nick Piggin's avatar
Nick Piggin committed
708
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
709
710
711
}

struct vm_operations_struct hugetlb_vm_ops = {
Nick Piggin's avatar
Nick Piggin committed
712
	.fault = hugetlb_vm_op_fault,
Linus Torvalds's avatar
Linus Torvalds committed
713
714
};

715
716
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
David Gibson's avatar
David Gibson committed
717
718
719
{
	pte_t entry;

720
	if (writable) {
David Gibson's avatar
David Gibson committed
721
722
723
724
725
726
727
728
729
730
731
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
		entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

732
733
734
735
736
737
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

	entry = pte_mkwrite(pte_mkdirty(*ptep));
738
739
740
	if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
		update_mmu_cache(vma, address, entry);
	}
741
742
743
}


David Gibson's avatar
David Gibson committed
744
745
746
747
748
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
749
	unsigned long addr;
750
751
752
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
David Gibson's avatar
David Gibson committed
753

754
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
755
756
757
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
David Gibson's avatar
David Gibson committed
758
759
760
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
761
762
763
764
765

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

766
		spin_lock(&dst->page_table_lock);
767
		spin_lock(&src->page_table_lock);
768
		if (!pte_none(*src_pte)) {
769
770
			if (cow)
				ptep_set_wrprotect(src, addr, src_pte);
771
772
773
774
775
776
			entry = *src_pte;
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
777
		spin_unlock(&dst->page_table_lock);
David Gibson's avatar
David Gibson committed
778
779
780
781
782
783
784
	}
	return 0;

nomem:
	return -ENOMEM;
}

785
786
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			    unsigned long end)
David Gibson's avatar
David Gibson committed
787
788
789
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
790
	pte_t *ptep;
David Gibson's avatar
David Gibson committed
791
792
	pte_t pte;
	struct page *page;
793
	struct page *tmp;
794
795
796
797
798
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
799
	LIST_HEAD(page_list);
David Gibson's avatar
David Gibson committed
800
801
802
803
804

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

805
	spin_lock(&mm->page_table_lock);
David Gibson's avatar
David Gibson committed
806
	for (address = start; address < end; address += HPAGE_SIZE) {
807
		ptep = huge_pte_offset(mm, address);
808
		if (!ptep)
809
810
			continue;

811
812
813
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

814
		pte = huge_ptep_get_and_clear(mm, address, ptep);
David Gibson's avatar
David Gibson committed
815
816
		if (pte_none(pte))
			continue;
817

David Gibson's avatar
David Gibson committed
818
		page = pte_page(pte);
819
820
		if (pte_dirty(pte))
			set_page_dirty(page);
821
		list_add(&page->lru, &page_list);
David Gibson's avatar
David Gibson committed
822
	}
Linus Torvalds's avatar
Linus Torvalds committed
823
	spin_unlock(&mm->page_table_lock);
824
	flush_tlb_range(vma, start, end);
825
826
827
828
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
Linus Torvalds's avatar
Linus Torvalds committed
829
}
David Gibson's avatar
David Gibson committed
830

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end)
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
		__unmap_hugepage_range(vma, start, end);
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

849
850
851
852
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *ptep, pte_t pte)
{
	struct page *old_page, *new_page;
853
	int avoidcopy;
854
855
856
857
858
859
860
861

	old_page = pte_page(pte);

	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
Nick Piggin's avatar
Nick Piggin committed
862
		return 0;
863
864
865
	}

	page_cache_get(old_page);
866
	new_page = alloc_huge_page(vma, address);
867

868
	if (IS_ERR(new_page)) {
869
		page_cache_release(old_page);
870
		return -PTR_ERR(new_page);
871
872
873
	}

	spin_unlock(&mm->page_table_lock);
874
	copy_huge_page(new_page, old_page, address, vma);
Nick Piggin's avatar
Nick Piggin committed
875
	__SetPageUptodate(new_page);
876
877
878
879
880
881
882
883
884
885
886
887
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
	if (likely(pte_same(*ptep, pte))) {
		/* Break COW */
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
Nick Piggin's avatar
Nick Piggin committed
888
	return 0;
889
890
}

891
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
892
			unsigned long address, pte_t *ptep, int write_access)
893
894
{
	int ret = VM_FAULT_SIGBUS;
895
896
897
898
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
899
	pte_t new_pte;
900
901
902
903
904
905
906
907
908

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
909
910
911
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
912
913
914
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
915
		page = alloc_huge_page(vma, address);
916
917
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
918
919
			goto out;
		}
920
		clear_huge_page(page, address);
Nick Piggin's avatar
Nick Piggin committed
921
		__SetPageUptodate(page);
922

923
924
		if (vma->vm_flags & VM_SHARED) {
			int err;
Ken Chen's avatar
Ken Chen committed
925
			struct inode *inode = mapping->host;
926
927
928
929
930
931
932
933

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
Ken Chen's avatar
Ken Chen committed
934
935
936
937

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
938
939
940
		} else
			lock_page(page);
	}
941

942
	spin_lock(&mm->page_table_lock);
943
944
945
946
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

Nick Piggin's avatar
Nick Piggin committed
947
	ret = 0;
948
	if (!pte_none(*ptep))
949
950
		goto backout;

951
952
953
954
955
956
957
958
959
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
	}

960
	spin_unlock(&mm->page_table_lock);
961
962
	unlock_page(page);
out:
963
	return ret;
964
965
966
967
968
969

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
970
971
}

972
973
974
975
976
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
977
	int ret;
978
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
979
980
981
982
983

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

984
985
986
987
988
989
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
990
	entry = *ptep;
991
992
993
994
995
	if (pte_none(entry)) {
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
996

Nick Piggin's avatar
Nick Piggin committed
997
	ret = 0;
998
999
1000

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */