hugetlb.c 60.3 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
Linus Torvalds's avatar
Linus Torvalds committed
11
12
#include <linux/sysctl.h>
#include <linux/highmem.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
13
#include <linux/mmu_notifier.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

David Gibson's avatar
David Gibson committed
22
23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
David Gibson's avatar
David Gibson committed
25
26

#include <linux/hugetlb.h>
27
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
28
29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30
31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33
34
35
36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37
38
__initdata LIST_HEAD(huge_boot_pages);

39
40
41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43
44
45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47
48
49
50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52
53
54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55
56
57
58
59
60
61
62
63
64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211
212
213
214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215
216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218
219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220
221
}

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

251
252
253
254
255
256
257
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
258
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259

260
261
262
263
264
265
266
267
268
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
269
270
271
272
273
274
275
276
277
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
278
 */
279
280
281
282
283
284
285
286
287
288
289
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

290
291
292
293
294
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

295
static struct resv_map *resv_map_alloc(void)
296
297
298
299
300
301
302
303
304
305
306
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

307
static void resv_map_release(struct kref *ref)
308
309
310
311
312
313
314
315
316
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317
318
319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
320
321
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
322
	return NULL;
323
324
}

325
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326
327
328
329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

330
331
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
332
333
334
335
336
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337
338
339
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340
341
342
343
344
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345
346

	return (get_vma_private_data(vma) & flag) != 0;
347
348
349
}

/* Decrement the reserved pages in the hugepage pool by one */
350
351
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
352
{
353
354
355
	if (vma->vm_flags & VM_NORESERVE)
		return;

356
357
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
358
		h->resv_huge_pages--;
359
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360
361
362
363
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
364
		h->resv_huge_pages--;
365
366
367
	}
}

368
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369
370
371
372
373
374
375
376
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
377
static int vma_has_reserves(struct vm_area_struct *vma)
378
379
{
	if (vma->vm_flags & VM_SHARED)
380
381
382
383
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
384
385
}

386
387
388
389
390
391
392
393
394
395
396
397
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
398
399
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
400
401
402
{
	int i;

Hannes Eder's avatar
Hannes Eder committed
403
404
405
406
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
407

408
	might_sleep();
409
	for (i = 0; i < sz/PAGE_SIZE; i++) {
410
		cond_resched();
411
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412
413
414
	}
}

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
432
static void copy_huge_page(struct page *dst, struct page *src,
433
			   unsigned long addr, struct vm_area_struct *vma)
434
435
{
	int i;
436
	struct hstate *h = hstate_vma(vma);
437

Hannes Eder's avatar
Hannes Eder committed
438
439
440
441
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
442

443
	might_sleep();
444
	for (i = 0; i < pages_per_huge_page(h); i++) {
445
		cond_resched();
446
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447
448
449
	}
}

450
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
451
452
{
	int nid = page_to_nid(page);
453
454
455
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
456
457
}

458
static struct page *dequeue_huge_page(struct hstate *h)
459
460
461
462
463
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464
465
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
466
467
					  struct page, lru);
			list_del(&page->lru);
468
469
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
470
471
472
473
474
475
			break;
		}
	}
	return page;
}

476
477
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
478
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
479
{
480
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
481
	struct page *page = NULL;
482
	struct mempolicy *mpol;
483
	nodemask_t *nodemask;
484
	struct zonelist *zonelist = huge_zonelist(vma, address,
485
					htlb_alloc_mask, &mpol, &nodemask);
486
487
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
488

489
490
491
492
493
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
494
	if (!vma_has_reserves(vma) &&
495
			h->free_huge_pages - h->resv_huge_pages == 0)
496
497
		return NULL;

498
	/* If reserves cannot be used, ensure enough pages are in the pool */
499
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500
501
		return NULL;

502
503
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
504
505
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506
507
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
508
509
					  struct page, lru);
			list_del(&page->lru);
510
511
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
512
513

			if (!avoid_reserve)
514
				decrement_hugepage_resv_vma(h, vma);
515

Ken Chen's avatar
Ken Chen committed
516
			break;
517
		}
Linus Torvalds's avatar
Linus Torvalds committed
518
	}
519
	mpol_cond_put(mpol);
Linus Torvalds's avatar
Linus Torvalds committed
520
521
522
	return page;
}

523
static void update_and_free_page(struct hstate *h, struct page *page)
524
525
{
	int i;
526

527
528
	VM_BUG_ON(h->order >= MAX_ORDER);

529
530
531
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
532
533
534
535
536
537
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
538
	arch_release_hugepage(page);
539
	__free_pages(page, huge_page_order(h));
540
541
}

542
543
544
545
546
547
548
549
550
551
552
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

553
554
static void free_huge_page(struct page *page)
{
555
556
557
558
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
559
	struct hstate *h = page_hstate(page);
560
	int nid = page_to_nid(page);
561
	struct address_space *mapping;
562

563
	mapping = (struct address_space *) page_private(page);
564
	set_page_private(page, 0);
565
	BUG_ON(page_count(page));
566
567
568
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
569
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570
571
572
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
573
	} else {
574
		enqueue_huge_page(h, page);
575
	}
576
	spin_unlock(&hugetlb_lock);
577
	if (mapping)
578
		hugetlb_put_quota(mapping, 1);
579
580
}

581
582
583
584
585
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
586
static int adjust_pool_surplus(struct hstate *h, int delta)
587
588
589
590
591
592
593
594
595
596
597
598
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
599
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
600
601
			continue;
		/* Surplus cannot exceed the total number of pages */
602
603
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
604
605
			continue;

606
607
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
608
609
610
611
612
613
614
615
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

616
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
617
618
619
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
620
621
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
622
623
624
625
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

626
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
627
628
{
	struct page *page;
629

630
631
632
	if (h->order >= MAX_ORDER)
		return NULL;

633
	page = alloc_pages_node(nid,
634
635
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
636
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
637
	if (page) {
638
		if (arch_prepare_hugepage(page)) {
639
			__free_pages(page, huge_page_order(h));
640
			return NULL;
641
		}
642
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
643
	}
644
645
646
647

	return page;
}

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

669
static int alloc_fresh_huge_page(struct hstate *h)
670
671
672
673
674
675
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

676
	start_nid = h->hugetlb_next_nid;
677
678

	do {
679
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
680
681
		if (page)
			ret = 1;
682
		next_nid = hstate_next_node(h);
683
	} while (!page && h->hugetlb_next_nid != start_nid);
684

685
686
687
688
689
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

690
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
691
692
}

693
694
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
695
696
{
	struct page *page;
697
	unsigned int nid;
698

699
700
701
	if (h->order >= MAX_ORDER)
		return NULL;

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
726
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
727
728
729
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
730
731
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
732
733
734
	}
	spin_unlock(&hugetlb_lock);

735
736
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
737
					huge_page_order(h));
738

739
740
741
742
743
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

744
	spin_lock(&hugetlb_lock);
745
	if (page) {
746
747
748
749
750
751
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
752
		nid = page_to_nid(page);
753
		set_compound_page_dtor(page, free_huge_page);
754
755
756
		/*
		 * We incremented the global counters already
		 */
757
758
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
759
		__count_vm_event(HTLB_BUDDY_PGALLOC);
760
	} else {
761
762
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
763
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
764
	}
765
	spin_unlock(&hugetlb_lock);
766
767
768
769

	return page;
}

770
771
772
773
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
774
static int gather_surplus_pages(struct hstate *h, int delta)
775
776
777
778
779
780
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

781
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
782
	if (needed <= 0) {
783
		h->resv_huge_pages += delta;
784
		return 0;
785
	}
786
787
788
789
790
791
792
793

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
794
		page = alloc_buddy_huge_page(h, NULL, 0);
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
815
816
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
817
818
819
820
821
822
823
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
824
825
826
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
827
828
	 */
	needed += allocated;
829
	h->resv_huge_pages += delta;
830
831
	ret = 0;
free:
832
	/* Free the needed pages to the hugetlb pool */
833
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
834
835
		if ((--needed) < 0)
			break;
836
		list_del(&page->lru);
837
		enqueue_huge_page(h, page);
838
839
840
841
842
843
844
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
845
			/*
846
847
848
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
849
850
851
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
852
			free_huge_page(page);
853
		}
854
		spin_lock(&hugetlb_lock);
855
856
857
858
859
860
861
862
863
864
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
865
866
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
867
868
869
870
871
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

872
873
874
875
876
877
878
879
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

880
	/* Uncommit the reservation */
881
	h->resv_huge_pages -= unused_resv_pages;
882

883
884
885
886
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

887
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
888

889
	while (remaining_iterations-- && nr_pages) {
890
891
892
893
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

894
		if (!h->surplus_huge_pages_node[nid])
895
896
			continue;

897
898
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
899
900
					  struct page, lru);
			list_del(&page->lru);
901
902
903
904
905
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
906
			nr_pages--;
907
			remaining_iterations = num_online_nodes();
908
909
910
911
		}
	}
}

912
913
914
915
916
917
918
919
920
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
921
922
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
923
924
925
926
927
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
928
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
929
930
931
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

932
933
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
934

935
936
	} else  {
		int err;
937
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
938
939
940
941
942
943
944
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
945
}
946
947
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
948
949
950
951
952
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
953
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
955
956

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
957
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
958
959
960
961
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
962
963
964
	}
}

965
static struct page *alloc_huge_page(struct vm_area_struct *vma,
966
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
967
{
968
	struct hstate *h = hstate_vma(vma);
969
	struct page *page;
970
971
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
972
	unsigned int chg;
973
974
975
976
977

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
978
979
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
980
	 */
981
	chg = vma_needs_reservation(h, vma, addr);
982
983
984
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
985
986
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
987
988

	spin_lock(&hugetlb_lock);
989
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
Linus Torvalds's avatar
Linus Torvalds committed
990
	spin_unlock(&hugetlb_lock);
991

Ken Chen's avatar
Ken Chen committed
992
	if (!page) {
993
		page = alloc_buddy_huge_page(h, vma, addr);
Ken Chen's avatar
Ken Chen committed
994
		if (!page) {
995
			hugetlb_put_quota(inode->i_mapping, chg);
Ken Chen's avatar
Ken Chen committed
996
997
998
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
999

1000
1001
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1002

1003
	vma_commit_reservation(h, vma, addr);
1004

1005
	return page;
1006
1007
}

1008
int __weak alloc_bootmem_huge_page(struct hstate *h)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1027
			goto found;
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1042
1043
1044
1045
1046
1047
1048
1049
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1060
		prep_compound_huge_page(page, h->order);
1061
1062
1063
1064
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1065
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
1066
1067
{
	unsigned long i;
1068

1069
	for (i = 0; i < h->max_huge_pages; ++i) {
1070
1071
1072
1073
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
Linus Torvalds's avatar
Linus Torvalds committed
1074
1075
			break;
	}
1076
	h->max_huge_pages = i;
1077
1078
1079
1080
1081
1082
1083
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1084
1085
1086
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1087
1088
1089
	}
}

Andi Kleen's avatar
Andi Kleen committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1101
1102
1103
1104
1105
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1106
1107
1108
1109
1110
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1111
1112
1113
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1114
#ifdef CONFIG_HIGHMEM
1115
static void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1116
{
1117
1118
	int i;

1119
1120
1121
	if (h->order >= MAX_ORDER)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
1122
1123
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1124
1125
1126
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1127
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1128
1129
1130
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1131
			update_and_free_page(h, page);
1132
1133
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1134
1135
1136
1137
		}
	}
}
#else
1138
static inline void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1139
1140
1141
1142
{
}
#endif

1143
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1144
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1145
{
1146
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1147

1148
1149
1150
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1151
1152
1153
1154
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1155
1156
1157
1158
1159
1160
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1161
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1162
	spin_lock(&hugetlb_lock);
1163
1164
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1165
1166
1167
			break;
	}

1168
	while (count > persistent_huge_pages(h)) {
1169
1170
1171
1172
1173
1174
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1175
		ret = alloc_fresh_huge_page(h);
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1188
1189
1190
1191
1192
1193
1194
1195
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1196
	 */
1197
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1198
	min_count = max(count, min_count);
1199
1200
1201
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
Linus Torvalds's avatar
Linus Torvalds committed
1202
1203
		if (!page)
			break;
1204
		update_and_free_page(h, page);
Linus Torvalds's avatar
Linus Torvalds committed
1205
	}
1206
1207
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1208
1209
1210
			break;
	}
out:
1211
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1212
	spin_unlock(&hugetlb_lock);
1213
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1214
1215
}

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240