hugetlb.c 56.1 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
#include <linux/bootmem.h>
18
#include <linux/sysfs.h>
19

David Gibson's avatar
David Gibson committed
20
21
22
23
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
24
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
25
26

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27
28
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
29

30
31
32
33
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

34
35
__initdata LIST_HEAD(huge_boot_pages);

36
37
38
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
39
static unsigned long __initdata default_hstate_size;
40
41
42

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
43

44
45
46
47
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
48

49
50
51
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
52
53
54
55
56
57
58
59
60
61
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

208
209
210
211
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
212
213
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
214
{
215
216
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
217
218
}

219
220
221
222
223
224
225
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
226
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
227

228
229
230
231
232
233
234
235
236
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
237
238
239
240
241
242
243
244
245
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
246
 */
247
248
249
250
251
252
253
254
255
256
257
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
285
286
287
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
288
289
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
290
291
292
	return 0;
}

293
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
294
295
296
297
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

298
299
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
300
301
302
303
304
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
305
306
307
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
308
309
310
311
312
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
313
314

	return (get_vma_private_data(vma) & flag) != 0;
315
316
317
}

/* Decrement the reserved pages in the hugepage pool by one */
318
319
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
320
{
321
322
323
	if (vma->vm_flags & VM_NORESERVE)
		return;

324
325
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
326
		h->resv_huge_pages--;
327
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
328
329
330
331
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
332
		h->resv_huge_pages--;
333
334
335
	}
}

336
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
337
338
339
340
341
342
343
344
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
345
static int vma_has_reserves(struct vm_area_struct *vma)
346
347
{
	if (vma->vm_flags & VM_SHARED)
348
349
350
351
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
352
353
}

354
355
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
356
357
358
359
{
	int i;

	might_sleep();
360
	for (i = 0; i < sz/PAGE_SIZE; i++) {
361
		cond_resched();
362
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
363
364
365
366
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
367
			   unsigned long addr, struct vm_area_struct *vma)
368
369
{
	int i;
370
	struct hstate *h = hstate_vma(vma);
371
372

	might_sleep();
373
	for (i = 0; i < pages_per_huge_page(h); i++) {
374
		cond_resched();
375
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
376
377
378
	}
}

379
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
380
381
{
	int nid = page_to_nid(page);
382
383
384
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
385
386
}

387
static struct page *dequeue_huge_page(struct hstate *h)
388
389
390
391
392
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
393
394
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
395
396
					  struct page, lru);
			list_del(&page->lru);
397
398
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
399
400
401
402
403
404
			break;
		}
	}
	return page;
}

405
406
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
407
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
408
{
409
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
410
	struct page *page = NULL;
411
	struct mempolicy *mpol;
412
	nodemask_t *nodemask;
413
	struct zonelist *zonelist = huge_zonelist(vma, address,
414
					htlb_alloc_mask, &mpol, &nodemask);
415
416
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
417

418
419
420
421
422
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
423
	if (!vma_has_reserves(vma) &&
424
			h->free_huge_pages - h->resv_huge_pages == 0)
425
426
		return NULL;

427
	/* If reserves cannot be used, ensure enough pages are in the pool */
428
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
429
430
		return NULL;

431
432
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
433
434
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
435
436
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
437
438
					  struct page, lru);
			list_del(&page->lru);
439
440
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
441
442

			if (!avoid_reserve)
443
				decrement_hugepage_resv_vma(h, vma);
444

Ken Chen's avatar
Ken Chen committed
445
			break;
446
		}
Linus Torvalds's avatar
Linus Torvalds committed
447
	}
448
	mpol_cond_put(mpol);
Linus Torvalds's avatar
Linus Torvalds committed
449
450
451
	return page;
}

452
static void update_and_free_page(struct hstate *h, struct page *page)
453
454
{
	int i;
455
456
457
458

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
459
460
461
462
463
464
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
465
	arch_release_hugepage(page);
466
	__free_pages(page, huge_page_order(h));
467
468
}

469
470
471
472
473
474
475
476
477
478
479
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

480
481
static void free_huge_page(struct page *page)
{
482
483
484
485
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
486
	struct hstate *h = page_hstate(page);
487
	int nid = page_to_nid(page);
488
	struct address_space *mapping;
489

490
	mapping = (struct address_space *) page_private(page);
491
	set_page_private(page, 0);
492
	BUG_ON(page_count(page));
493
494
495
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
496
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
497
498
499
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
500
	} else {
501
		enqueue_huge_page(h, page);
502
	}
503
	spin_unlock(&hugetlb_lock);
504
	if (mapping)
505
		hugetlb_put_quota(mapping, 1);
506
507
}

508
509
510
511
512
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
513
static int adjust_pool_surplus(struct hstate *h, int delta)
514
515
516
517
518
519
520
521
522
523
524
525
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
526
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
527
528
			continue;
		/* Surplus cannot exceed the total number of pages */
529
530
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
531
532
			continue;

533
534
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
535
536
537
538
539
540
541
542
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

543
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
544
545
546
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
547
548
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
549
550
551
552
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

553
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
554
555
{
	struct page *page;
556

557
558
559
	if (h->order >= MAX_ORDER)
		return NULL;

560
	page = alloc_pages_node(nid,
561
562
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
563
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
564
	if (page) {
565
566
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
567
			return NULL;
568
		}
569
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
570
	}
571
572
573
574

	return page;
}

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

596
static int alloc_fresh_huge_page(struct hstate *h)
597
598
599
600
601
602
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

603
	start_nid = h->hugetlb_next_nid;
604
605

	do {
606
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
607
608
		if (page)
			ret = 1;
609
		next_nid = hstate_next_node(h);
610
	} while (!page && h->hugetlb_next_nid != start_nid);
611

612
613
614
615
616
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

617
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
618
619
}

620
621
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
622
623
{
	struct page *page;
624
	unsigned int nid;
625

626
627
628
	if (h->order >= MAX_ORDER)
		return NULL;

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
653
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
654
655
656
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
657
658
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
659
660
661
	}
	spin_unlock(&hugetlb_lock);

662
663
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
664
					huge_page_order(h));
665
666

	spin_lock(&hugetlb_lock);
667
	if (page) {
668
669
670
671
672
673
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
674
		nid = page_to_nid(page);
675
		set_compound_page_dtor(page, free_huge_page);
676
677
678
		/*
		 * We incremented the global counters already
		 */
679
680
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
681
		__count_vm_event(HTLB_BUDDY_PGALLOC);
682
	} else {
683
684
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
685
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
	}
687
	spin_unlock(&hugetlb_lock);
688
689
690
691

	return page;
}

692
693
694
695
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
696
static int gather_surplus_pages(struct hstate *h, int delta)
697
698
699
700
701
702
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

703
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
704
	if (needed <= 0) {
705
		h->resv_huge_pages += delta;
706
		return 0;
707
	}
708
709
710
711
712
713
714
715

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
716
		page = alloc_buddy_huge_page(h, NULL, 0);
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
737
738
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
739
740
741
742
743
744
745
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
746
747
748
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
749
750
	 */
	needed += allocated;
751
	h->resv_huge_pages += delta;
752
753
	ret = 0;
free:
754
	/* Free the needed pages to the hugetlb pool */
755
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
756
757
		if ((--needed) < 0)
			break;
758
		list_del(&page->lru);
759
		enqueue_huge_page(h, page);
760
761
762
763
764
765
766
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
767
			/*
768
769
770
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
771
772
773
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
774
			free_huge_page(page);
775
		}
776
		spin_lock(&hugetlb_lock);
777
778
779
780
781
782
783
784
785
786
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
787
788
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
789
790
791
792
793
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

794
795
796
797
798
799
800
801
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

802
	/* Uncommit the reservation */
803
	h->resv_huge_pages -= unused_resv_pages;
804

805
806
807
808
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

809
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
810

811
	while (remaining_iterations-- && nr_pages) {
812
813
814
815
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

816
		if (!h->surplus_huge_pages_node[nid])
817
818
			continue;

819
820
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
821
822
					  struct page, lru);
			list_del(&page->lru);
823
824
825
826
827
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
828
			nr_pages--;
829
			remaining_iterations = num_online_nodes();
830
831
832
833
		}
	}
}

834
835
836
837
838
839
840
841
842
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
843
844
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
845
846
847
848
849
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
850
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
851
852
853
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

854
855
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
856

857
858
	} else  {
		int err;
859
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
860
861
862
863
864
865
866
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
867
}
868
869
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
870
871
872
873
874
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
875
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
876
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
877
878

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
879
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
880
881
882
883
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
884
885
886
	}
}

887
static struct page *alloc_huge_page(struct vm_area_struct *vma,
888
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
889
{
890
	struct hstate *h = hstate_vma(vma);
891
	struct page *page;
892
893
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
894
	unsigned int chg;
895
896
897
898
899

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
900
901
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
902
	 */
903
	chg = vma_needs_reservation(h, vma, addr);
904
905
906
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
907
908
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
909
910

	spin_lock(&hugetlb_lock);
911
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
Linus Torvalds's avatar
Linus Torvalds committed
912
	spin_unlock(&hugetlb_lock);
913

Ken Chen's avatar
Ken Chen committed
914
	if (!page) {
915
		page = alloc_buddy_huge_page(h, vma, addr);
Ken Chen's avatar
Ken Chen committed
916
		if (!page) {
917
			hugetlb_put_quota(inode->i_mapping, chg);
Ken Chen's avatar
Ken Chen committed
918
919
920
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
921

922
923
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
924

925
	vma_commit_reservation(h, vma, addr);
926

927
	return page;
928
929
}

930
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

980
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
981
982
{
	unsigned long i;
983

984
	for (i = 0; i < h->max_huge_pages; ++i) {
985
986
987
988
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
Linus Torvalds's avatar
Linus Torvalds committed
989
990
			break;
	}
991
	h->max_huge_pages = i;
992
993
994
995
996
997
998
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
999
1000
1001
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1002
1003
1004
	}
}

Andi Kleen's avatar
Andi Kleen committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1016
1017
1018
1019
1020
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1021
1022
1023
1024
1025
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1026
1027
1028
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1029
1030
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
1031
static void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1032
{
1033
1034
	int i;

1035
1036
1037
	if (h->order >= MAX_ORDER)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
1038
1039
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1040
1041
1042
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1043
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1044
1045
1046
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1047
			update_and_free_page(h, page);
1048
1049
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1050
1051
1052
1053
		}
	}
}
#else
1054
static inline void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1055
1056
1057
1058
{
}
#endif

1059
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1060
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1061
{
1062
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1063

1064
1065
1066
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1067
1068
1069
1070
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1071
1072
1073
1074
1075
1076
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1077
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1078
	spin_lock(&hugetlb_lock);
1079
1080
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1081
1082
1083
			break;
	}

1084
	while (count > persistent_huge_pages(h)) {
1085
1086
1087
1088
1089
1090
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1091
		ret = alloc_fresh_huge_page(h);
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1104
1105
1106
1107
1108
1109
1110
1111
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1112
	 */
1113
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1114
	min_count = max(count, min_count);
1115
1116
1117
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
Linus Torvalds's avatar
Linus Torvalds committed
1118
1119
		if (!page)
			break;
1120
		update_and_free_page(h, page);
Linus Torvalds's avatar
Linus Torvalds committed
1121
	}
1122
1123
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1124
1125
1126
			break;
	}
out:
1127
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1128
	spin_unlock(&hugetlb_lock);
1129
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1130
1131
}

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

1287
1288
1289
1290
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1291
	}
1292
1293
1294
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1295
1296
1297

	hugetlb_init_hstates();

1298
1299
	gather_bootmem_prealloc();

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1312
1313
	unsigned long i;

1314
1315
1316
1317
1318
1319
1320
1321
1322
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1323
1324
1325
1326
1327
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1328
1329