hugetlb.c 61.7 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
Linus Torvalds's avatar
Linus Torvalds committed
11
12
#include <linux/sysctl.h>
#include <linux/highmem.h>
Andrea Arcangeli's avatar
Andrea Arcangeli committed
13
#include <linux/mmu_notifier.h>
Linus Torvalds's avatar
Linus Torvalds committed
14
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

David Gibson's avatar
David Gibson committed
22
23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
David Gibson's avatar
David Gibson committed
25
26

#include <linux/hugetlb.h>
27
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
28
29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30
31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33
34
35
36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37
38
__initdata LIST_HEAD(huge_boot_pages);

39
40
41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43
44
45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47
48
49
50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52
53
54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55
56
57
58
59
60
61
62
63
64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211
212
213
214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215
216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218
219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220
221
}

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

251
252
253
254
255
256
257
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
258
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259

260
261
262
263
264
265
266
267
268
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
269
270
271
272
273
274
275
276
277
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
278
 */
279
280
281
282
283
284
285
286
287
288
289
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

290
291
292
293
294
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

295
static struct resv_map *resv_map_alloc(void)
296
297
298
299
300
301
302
303
304
305
306
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

307
static void resv_map_release(struct kref *ref)
308
309
310
311
312
313
314
315
316
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317
318
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
319
	if (!(vma->vm_flags & VM_MAYSHARE))
320
321
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
322
	return NULL;
323
324
}

325
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326
327
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
328
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
329

330
331
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
332
333
334
335
336
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
338
339

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340
341
342
343
344
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345
346

	return (get_vma_private_data(vma) & flag) != 0;
347
348
349
}

/* Decrement the reserved pages in the hugepage pool by one */
350
351
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
352
{
353
354
355
	if (vma->vm_flags & VM_NORESERVE)
		return;

356
	if (vma->vm_flags & VM_MAYSHARE) {
357
		/* Shared mappings always use reserves */
358
		h->resv_huge_pages--;
359
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360
361
362
363
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
364
		h->resv_huge_pages--;
365
366
367
	}
}

368
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369
370
371
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
372
	if (!(vma->vm_flags & VM_MAYSHARE))
373
374
375
376
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
377
static int vma_has_reserves(struct vm_area_struct *vma)
378
{
379
	if (vma->vm_flags & VM_MAYSHARE)
380
381
382
383
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
384
385
}

386
387
388
389
390
391
392
393
394
395
396
397
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
398
399
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
400
401
402
{
	int i;

Hannes Eder's avatar
Hannes Eder committed
403
404
405
406
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
407

408
	might_sleep();
409
	for (i = 0; i < sz/PAGE_SIZE; i++) {
410
		cond_resched();
411
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
412
413
414
	}
}

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
432
static void copy_huge_page(struct page *dst, struct page *src,
433
			   unsigned long addr, struct vm_area_struct *vma)
434
435
{
	int i;
436
	struct hstate *h = hstate_vma(vma);
437

Hannes Eder's avatar
Hannes Eder committed
438
439
440
441
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
442

443
	might_sleep();
444
	for (i = 0; i < pages_per_huge_page(h); i++) {
445
		cond_resched();
446
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
447
448
449
	}
}

450
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
451
452
{
	int nid = page_to_nid(page);
453
454
455
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
456
457
}

458
static struct page *dequeue_huge_page(struct hstate *h)
459
460
461
462
463
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
464
465
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
466
467
					  struct page, lru);
			list_del(&page->lru);
468
469
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
470
471
472
473
474
475
			break;
		}
	}
	return page;
}

476
477
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
478
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
479
{
480
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
481
	struct page *page = NULL;
482
	struct mempolicy *mpol;
483
	nodemask_t *nodemask;
484
	struct zonelist *zonelist = huge_zonelist(vma, address,
485
					htlb_alloc_mask, &mpol, &nodemask);
486
487
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
488

489
490
491
492
493
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
494
	if (!vma_has_reserves(vma) &&
495
			h->free_huge_pages - h->resv_huge_pages == 0)
496
497
		return NULL;

498
	/* If reserves cannot be used, ensure enough pages are in the pool */
499
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
500
501
		return NULL;

502
503
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
504
505
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
506
507
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
508
509
					  struct page, lru);
			list_del(&page->lru);
510
511
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
512
513

			if (!avoid_reserve)
514
				decrement_hugepage_resv_vma(h, vma);
515

Ken Chen's avatar
Ken Chen committed
516
			break;
517
		}
Linus Torvalds's avatar
Linus Torvalds committed
518
	}
519
	mpol_cond_put(mpol);
Linus Torvalds's avatar
Linus Torvalds committed
520
521
522
	return page;
}

523
static void update_and_free_page(struct hstate *h, struct page *page)
524
525
{
	int i;
526

527
528
	VM_BUG_ON(h->order >= MAX_ORDER);

529
530
531
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
532
533
534
535
536
537
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
538
	arch_release_hugepage(page);
539
	__free_pages(page, huge_page_order(h));
540
541
}

542
543
544
545
546
547
548
549
550
551
552
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

553
554
static void free_huge_page(struct page *page)
{
555
556
557
558
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
559
	struct hstate *h = page_hstate(page);
560
	int nid = page_to_nid(page);
561
	struct address_space *mapping;
562

563
	mapping = (struct address_space *) page_private(page);
564
	set_page_private(page, 0);
565
	BUG_ON(page_count(page));
566
567
568
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
569
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
570
571
572
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
573
	} else {
574
		enqueue_huge_page(h, page);
575
	}
576
	spin_unlock(&hugetlb_lock);
577
	if (mapping)
578
		hugetlb_put_quota(mapping, 1);
579
580
}

581
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
582
583
584
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
585
586
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
587
588
589
590
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

619
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
620
621
{
	struct page *page;
622

623
624
625
	if (h->order >= MAX_ORDER)
		return NULL;

626
	page = alloc_pages_exact_node(nid,
627
628
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
629
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
630
	if (page) {
631
		if (arch_prepare_hugepage(page)) {
632
			__free_pages(page, huge_page_order(h));
633
			return NULL;
634
		}
635
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
636
	}
637
638
639
640

	return page;
}

641
642
643
644
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
645
 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

662
static int alloc_fresh_huge_page(struct hstate *h)
663
664
665
666
667
668
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

669
	start_nid = h->hugetlb_next_nid;
670
671

	do {
672
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
673
674
		if (page)
			ret = 1;
675
		next_nid = hstate_next_node(h);
676
	} while (!page && h->hugetlb_next_nid != start_nid);
677

678
679
680
681
682
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

683
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
684
685
}

686
687
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
688
689
{
	struct page *page;
690
	unsigned int nid;
691

692
693
694
	if (h->order >= MAX_ORDER)
		return NULL;

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
719
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
720
721
722
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
723
724
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
725
726
727
	}
	spin_unlock(&hugetlb_lock);

728
729
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
730
					huge_page_order(h));
731

732
733
734
735
736
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

737
	spin_lock(&hugetlb_lock);
738
	if (page) {
739
740
741
742
743
744
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
745
		nid = page_to_nid(page);
746
		set_compound_page_dtor(page, free_huge_page);
747
748
749
		/*
		 * We incremented the global counters already
		 */
750
751
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
752
		__count_vm_event(HTLB_BUDDY_PGALLOC);
753
	} else {
754
755
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
756
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
757
	}
758
	spin_unlock(&hugetlb_lock);
759
760
761
762

	return page;
}

763
764
765
766
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
767
static int gather_surplus_pages(struct hstate *h, int delta)
768
769
770
771
772
773
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

774
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
775
	if (needed <= 0) {
776
		h->resv_huge_pages += delta;
777
		return 0;
778
	}
779
780
781
782
783
784
785
786

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
787
		page = alloc_buddy_huge_page(h, NULL, 0);
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
808
809
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
810
811
812
813
814
815
816
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
817
818
819
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
820
821
	 */
	needed += allocated;
822
	h->resv_huge_pages += delta;
823
824
	ret = 0;
free:
825
	/* Free the needed pages to the hugetlb pool */
826
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
827
828
		if ((--needed) < 0)
			break;
829
		list_del(&page->lru);
830
		enqueue_huge_page(h, page);
831
832
833
834
835
836
837
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
838
			/*
839
840
841
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
842
843
844
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
845
			free_huge_page(page);
846
		}
847
		spin_lock(&hugetlb_lock);
848
849
850
851
852
853
854
855
856
857
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
858
859
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
860
861
862
863
864
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

865
866
867
868
869
870
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
871
	unsigned long remaining_iterations = nr_online_nodes;
872

873
	/* Uncommit the reservation */
874
	h->resv_huge_pages -= unused_resv_pages;
875

876
877
878
879
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

880
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
881

882
	while (remaining_iterations-- && nr_pages) {
883
884
885
886
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

887
		if (!h->surplus_huge_pages_node[nid])
888
889
			continue;

890
891
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
892
893
					  struct page, lru);
			list_del(&page->lru);
894
895
896
897
898
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
899
			nr_pages--;
900
			remaining_iterations = nr_online_nodes;
901
902
903
904
		}
	}
}

905
906
907
908
909
910
911
912
913
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
914
static long vma_needs_reservation(struct hstate *h,
915
			struct vm_area_struct *vma, unsigned long addr)
916
917
918
919
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

920
	if (vma->vm_flags & VM_MAYSHARE) {
921
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
922
923
924
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

925
926
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
927

928
	} else  {
929
		long err;
930
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
931
932
933
934
935
936
937
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
938
}
939
940
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
941
942
943
944
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

945
	if (vma->vm_flags & VM_MAYSHARE) {
946
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
947
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
948
949

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
950
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
951
952
953
954
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
955
956
957
	}
}

958
static struct page *alloc_huge_page(struct vm_area_struct *vma,
959
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
960
{
961
	struct hstate *h = hstate_vma(vma);
962
	struct page *page;
963
964
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
965
	long chg;
966
967
968
969
970

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
971
972
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
973
	 */
974
	chg = vma_needs_reservation(h, vma, addr);
975
976
977
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
978
979
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
980
981

	spin_lock(&hugetlb_lock);
982
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
Linus Torvalds's avatar
Linus Torvalds committed
983
	spin_unlock(&hugetlb_lock);
984

Ken Chen's avatar
Ken Chen committed
985
	if (!page) {
986
		page = alloc_buddy_huge_page(h, vma, addr);
Ken Chen's avatar
Ken Chen committed
987
		if (!page) {
988
			hugetlb_put_quota(inode->i_mapping, chg);
Ken Chen's avatar
Ken Chen committed
989
990
991
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
992

993
994
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
995

996
	vma_commit_reservation(h, vma, addr);
997

998
	return page;
999
1000
}

1001
int __weak alloc_bootmem_huge_page(struct hstate *h)
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1020
			goto found;
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1035
1036
1037
1038
1039
1040
1041
1042
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1053
		prep_compound_huge_page(page, h->order);
1054
1055
1056
1057
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1058
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
1059
1060
{
	unsigned long i;
1061

1062
	for (i = 0; i < h->max_huge_pages; ++i) {
1063
1064
1065
1066
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
Linus Torvalds's avatar
Linus Torvalds committed
1067
1068
			break;
	}
1069
	h->max_huge_pages = i;
1070
1071
1072
1073
1074
1075
1076
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1077
1078
1079
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1080
1081
1082
	}
}

Andi Kleen's avatar
Andi Kleen committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1094
1095
1096
1097
1098
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1099
1100
1101
1102
1103
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1104
1105
1106
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1107
#ifdef CONFIG_HIGHMEM
1108
static void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1109
{
1110
1111
	int i;

1112
1113
1114
	if (h->order >= MAX_ORDER)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
1115
1116
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1117
1118
1119
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1120
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1121
1122
1123
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1124
			update_and_free_page(h, page);
1125
1126
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1127
1128
1129
1130
		}
	}
}
#else
1131
static inline void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1132
1133
1134
1135
{
}
#endif

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
			continue;

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

1171
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1172
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1173
{
1174
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1175

1176
1177
1178
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1179
1180
1181
1182
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1183
1184
1185
1186
1187
1188
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1189
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1190
	spin_lock(&hugetlb_lock);
1191
1192
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1193
1194
1195
			break;
	}

1196
	while (count > persistent_huge_pages(h)) {
1197
1198
1199
1200
1201
1202
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1203
		ret = alloc_fresh_huge_page(h);
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1216
1217
1218
1219
1220
1221
1222
1223
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1224
	 */
1225
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1226
	min_count = max(count, min_count);
1227
1228
1229
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
Linus Torvalds's avatar
Linus Torvalds committed
1230
1231
		if (!page)
			break;
1232
		update_and_free_page(h, page);
Linus Torvalds's avatar
Linus Torvalds committed
1233
	}
1234
1235
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1236
1237
1238
			break;
	}
out:
1239
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1240
	spin_unlock(&hugetlb_lock);
1241
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1242
1243
}

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291