hugetlb.c 56.1 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
David Gibson's avatar
David Gibson committed
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
#include <linux/bootmem.h>
18
#include <linux/sysfs.h>
19

David Gibson's avatar
David Gibson committed
20
21
22
23
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
24
#include "internal.h"
Linus Torvalds's avatar
Linus Torvalds committed
25
26

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27
28
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
29

30
31
32
33
34
35
36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
37
static unsigned long __initdata default_hstate_size;
38
39
40

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
41

42
43
44
45
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
46

47
48
49
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
50
51
52
53
54
55
56
57
58
59
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

206
207
208
209
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
210
211
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
212
{
213
214
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
215
216
}

217
218
219
220
221
222
223
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
224
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
225

226
227
228
229
230
231
232
233
234
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
235
236
237
238
239
240
241
242
243
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
244
 */
245
246
247
248
249
250
251
252
253
254
255
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
283
284
285
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
286
287
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
288
289
290
	return 0;
}

291
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
292
293
294
295
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

296
297
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
298
299
300
301
302
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
303
304
305
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
306
307
308
309
310
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
311
312

	return (get_vma_private_data(vma) & flag) != 0;
313
314
315
}

/* Decrement the reserved pages in the hugepage pool by one */
316
317
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
318
{
319
320
321
	if (vma->vm_flags & VM_NORESERVE)
		return;

322
323
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
324
		h->resv_huge_pages--;
325
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
326
327
328
329
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
330
		h->resv_huge_pages--;
331
332
333
	}
}

334
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
335
336
337
338
339
340
341
342
343
344
345
346
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
347
	if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
348
349
350
351
		return 0;
	return 1;
}

352
353
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
354
355
356
357
{
	int i;

	might_sleep();
358
	for (i = 0; i < sz/PAGE_SIZE; i++) {
359
		cond_resched();
360
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
361
362
363
364
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
365
			   unsigned long addr, struct vm_area_struct *vma)
366
367
{
	int i;
368
	struct hstate *h = hstate_vma(vma);
369
370

	might_sleep();
371
	for (i = 0; i < pages_per_huge_page(h); i++) {
372
		cond_resched();
373
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
374
375
376
	}
}

377
static void enqueue_huge_page(struct hstate *h, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
378
379
{
	int nid = page_to_nid(page);
380
381
382
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
Linus Torvalds's avatar
Linus Torvalds committed
383
384
}

385
static struct page *dequeue_huge_page(struct hstate *h)
386
387
388
389
390
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
391
392
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
393
394
					  struct page, lru);
			list_del(&page->lru);
395
396
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
397
398
399
400
401
402
			break;
		}
	}
	return page;
}

403
404
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
405
				unsigned long address, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
406
{
407
	int nid;
Linus Torvalds's avatar
Linus Torvalds committed
408
	struct page *page = NULL;
409
	struct mempolicy *mpol;
410
	nodemask_t *nodemask;
411
	struct zonelist *zonelist = huge_zonelist(vma, address,
412
					htlb_alloc_mask, &mpol, &nodemask);
413
414
	struct zone *zone;
	struct zoneref *z;
Linus Torvalds's avatar
Linus Torvalds committed
415

416
417
418
419
420
421
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
422
			h->free_huge_pages - h->resv_huge_pages == 0)
423
424
		return NULL;

425
	/* If reserves cannot be used, ensure enough pages are in the pool */
426
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
427
428
		return NULL;

429
430
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
431
432
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
433
434
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
435
436
					  struct page, lru);
			list_del(&page->lru);
437
438
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
439
440

			if (!avoid_reserve)
441
				decrement_hugepage_resv_vma(h, vma);
442

Ken Chen's avatar
Ken Chen committed
443
			break;
444
		}
Linus Torvalds's avatar
Linus Torvalds committed
445
	}
446
	mpol_cond_put(mpol);
Linus Torvalds's avatar
Linus Torvalds committed
447
448
449
	return page;
}

450
static void update_and_free_page(struct hstate *h, struct page *page)
451
452
{
	int i;
453
454
455
456

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
457
458
459
460
461
462
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
463
	arch_release_hugepage(page);
464
	__free_pages(page, huge_page_order(h));
465
466
}

467
468
469
470
471
472
473
474
475
476
477
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

478
479
static void free_huge_page(struct page *page)
{
480
481
482
483
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
484
	struct hstate *h = page_hstate(page);
485
	int nid = page_to_nid(page);
486
	struct address_space *mapping;
487

488
	mapping = (struct address_space *) page_private(page);
489
	set_page_private(page, 0);
490
	BUG_ON(page_count(page));
491
492
493
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
494
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
495
496
497
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
498
	} else {
499
		enqueue_huge_page(h, page);
500
	}
501
	spin_unlock(&hugetlb_lock);
502
	if (mapping)
503
		hugetlb_put_quota(mapping, 1);
504
505
}

506
507
508
509
510
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
511
static int adjust_pool_surplus(struct hstate *h, int delta)
512
513
514
515
516
517
518
519
520
521
522
523
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
524
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
525
526
			continue;
		/* Surplus cannot exceed the total number of pages */
527
528
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
529
530
			continue;

531
532
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
533
534
535
536
537
538
539
540
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

541
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
542
543
544
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
545
546
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
547
548
549
550
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

551
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
Linus Torvalds's avatar
Linus Torvalds committed
552
553
{
	struct page *page;
554

555
556
557
	if (h->order >= MAX_ORDER)
		return NULL;

558
	page = alloc_pages_node(nid,
559
560
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
561
		huge_page_order(h));
Linus Torvalds's avatar
Linus Torvalds committed
562
	if (page) {
563
564
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
565
			return NULL;
566
		}
567
		prep_new_huge_page(h, page, nid);
Linus Torvalds's avatar
Linus Torvalds committed
568
	}
569
570
571
572

	return page;
}

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

594
static int alloc_fresh_huge_page(struct hstate *h)
595
596
597
598
599
600
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

601
	start_nid = h->hugetlb_next_nid;
602
603

	do {
604
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
605
606
		if (page)
			ret = 1;
607
		next_nid = hstate_next_node(h);
608
	} while (!page && h->hugetlb_next_nid != start_nid);
609

610
611
612
613
614
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

615
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
616
617
}

618
619
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
621
{
	struct page *page;
622
	unsigned int nid;
623

624
625
626
	if (h->order >= MAX_ORDER)
		return NULL;

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
651
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
652
653
654
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
655
656
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
657
658
659
	}
	spin_unlock(&hugetlb_lock);

660
661
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
662
					huge_page_order(h));
663
664

	spin_lock(&hugetlb_lock);
665
	if (page) {
666
667
668
669
670
671
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
672
		nid = page_to_nid(page);
673
		set_compound_page_dtor(page, free_huge_page);
674
675
676
		/*
		 * We incremented the global counters already
		 */
677
678
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
679
		__count_vm_event(HTLB_BUDDY_PGALLOC);
680
	} else {
681
682
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
683
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
684
	}
685
	spin_unlock(&hugetlb_lock);
686
687
688
689

	return page;
}

690
691
692
693
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
694
static int gather_surplus_pages(struct hstate *h, int delta)
695
696
697
698
699
700
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

701
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
702
	if (needed <= 0) {
703
		h->resv_huge_pages += delta;
704
		return 0;
705
	}
706
707
708
709
710
711
712
713

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
714
		page = alloc_buddy_huge_page(h, NULL, 0);
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
735
736
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
737
738
739
740
741
742
743
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
744
745
746
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
747
748
	 */
	needed += allocated;
749
	h->resv_huge_pages += delta;
750
751
	ret = 0;
free:
752
	/* Free the needed pages to the hugetlb pool */
753
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
754
755
		if ((--needed) < 0)
			break;
756
		list_del(&page->lru);
757
		enqueue_huge_page(h, page);
758
759
760
761
762
763
764
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
765
			/*
766
767
768
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
769
770
771
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
772
			free_huge_page(page);
773
		}
774
		spin_lock(&hugetlb_lock);
775
776
777
778
779
780
781
782
783
784
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
785
786
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
787
788
789
790
791
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

792
793
794
795
796
797
798
799
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

800
	/* Uncommit the reservation */
801
	h->resv_huge_pages -= unused_resv_pages;
802

803
804
805
806
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

807
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
808

809
	while (remaining_iterations-- && nr_pages) {
810
811
812
813
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

814
		if (!h->surplus_huge_pages_node[nid])
815
816
			continue;

817
818
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
819
820
					  struct page, lru);
			list_del(&page->lru);
821
822
823
824
825
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
826
			nr_pages--;
827
			remaining_iterations = num_online_nodes();
828
829
830
831
		}
	}
}

832
833
834
835
836
837
838
839
840
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
841
842
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
843
844
845
846
847
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
848
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
849
850
851
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

852
853
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
854

855
856
	} else  {
		int err;
857
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
858
859
860
861
862
863
864
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
865
}
866
867
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
868
869
870
871
872
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
873
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
874
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
875
876

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
877
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
878
879
880
881
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
882
883
884
	}
}

885
static struct page *alloc_huge_page(struct vm_area_struct *vma,
886
				    unsigned long addr, int avoid_reserve)
Linus Torvalds's avatar
Linus Torvalds committed
887
{
888
	struct hstate *h = hstate_vma(vma);
889
	struct page *page;
890
891
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
892
	unsigned int chg;
893
894
895
896
897

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
898
899
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
900
	 */
901
	chg = vma_needs_reservation(h, vma, addr);
902
903
904
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
905
906
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
Linus Torvalds's avatar
Linus Torvalds committed
907
908

	spin_lock(&hugetlb_lock);
909
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
Linus Torvalds's avatar
Linus Torvalds committed
910
	spin_unlock(&hugetlb_lock);
911

Ken Chen's avatar
Ken Chen committed
912
	if (!page) {
913
		page = alloc_buddy_huge_page(h, vma, addr);
Ken Chen's avatar
Ken Chen committed
914
		if (!page) {
915
			hugetlb_put_quota(inode->i_mapping, chg);
Ken Chen's avatar
Ken Chen committed
916
917
918
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
919

920
921
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
922

923
	vma_commit_reservation(h, vma, addr);
924

925
	return page;
926
927
}

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
static __initdata LIST_HEAD(huge_boot_pages);

struct huge_bootmem_page {
	struct list_head list;
	struct hstate *hstate;
};

static int __init alloc_bootmem_huge_page(struct hstate *h)
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

985
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
Linus Torvalds's avatar
Linus Torvalds committed
986
987
{
	unsigned long i;
988

989
	for (i = 0; i < h->max_huge_pages; ++i) {
990
991
992
993
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
Linus Torvalds's avatar
Linus Torvalds committed
994
995
			break;
	}
996
	h->max_huge_pages = i;
997
998
999
1000
1001
1002
1003
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1004
1005
1006
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1007
1008
1009
	}
}

Andi Kleen's avatar
Andi Kleen committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1021
1022
1023
1024
1025
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
Andi Kleen's avatar
Andi Kleen committed
1026
1027
1028
1029
1030
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1031
1032
1033
	}
}

Linus Torvalds's avatar
Linus Torvalds committed
1034
1035
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
1036
static void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1037
{
1038
1039
	int i;

1040
1041
1042
	if (h->order >= MAX_ORDER)
		return;

Linus Torvalds's avatar
Linus Torvalds committed
1043
1044
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1045
1046
1047
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1048
				return;
Linus Torvalds's avatar
Linus Torvalds committed
1049
1050
1051
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1052
			update_and_free_page(h, page);
1053
1054
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
Linus Torvalds's avatar
Linus Torvalds committed
1055
1056
1057
1058
		}
	}
}
#else
1059
static inline void try_to_free_low(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1060
1061
1062
1063
{
}
#endif

1064
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1065
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
Linus Torvalds's avatar
Linus Torvalds committed
1066
{
1067
	unsigned long min_count, ret;
Linus Torvalds's avatar
Linus Torvalds committed
1068

1069
1070
1071
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1072
1073
1074
1075
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1076
1077
1078
1079
1080
1081
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1082
	 */
Linus Torvalds's avatar
Linus Torvalds committed
1083
	spin_lock(&hugetlb_lock);
1084
1085
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1086
1087
1088
			break;
	}

1089
	while (count > persistent_huge_pages(h)) {
1090
1091
1092
1093
1094
1095
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1096
		ret = alloc_fresh_huge_page(h);
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1109
1110
1111
1112
1113
1114
1115
1116
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1117
	 */
1118
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1119
	min_count = max(count, min_count);
1120
1121
1122
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
Linus Torvalds's avatar
Linus Torvalds committed
1123
1124
		if (!page)
			break;
1125
		update_and_free_page(h, page);
Linus Torvalds's avatar
Linus Torvalds committed
1126
	}
1127
1128
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1129
1130
1131
			break;
	}
out:
1132
	ret = persistent_huge_pages(h);
Linus Torvalds's avatar
Linus Torvalds committed
1133
	spin_unlock(&hugetlb_lock);
1134
	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
1135
1136
}

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

1292
1293
1294
1295
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1296
	}
1297
1298
1299
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1300
1301
1302

	hugetlb_init_hstates();

1303
1304
	gather_bootmem_prealloc();

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1317
1318
	unsigned long i;

1319
1320
1321
1322
1323
1324
1325
1326
1327
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1328
1329
1330
1331
1332
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1333
1334
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1335

1336
1337
1338
	parsed_hstate = h;
}

1339
static int __init hugetlb_nrpages_setup(char *s)