swiotlb-xen.c 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/*
 *  Copyright 2010
 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 *
 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License v2.0 as published by
 * the Free Software Foundation
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * PV guests under Xen are running in an non-contiguous memory architecture.
 *
 * When PCI pass-through is utilized, this necessitates an IOMMU for
 * translating bus (DMA) to virtual and vice-versa and also providing a
 * mechanism to have contiguous pages for device drivers operations (say DMA
 * operations).
 *
 * Specifically, under Xen the Linux idea of pages is an illusion. It
 * assumes that pages start at zero and go up to the available memory. To
 * help with that, the Linux Xen MMU provides a lookup mechanism to
 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 * memory is not contiguous. Xen hypervisor stitches memory for guests
 * from different pools, which means there is no guarantee that PFN==MFN
 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 * allocated in descending order (high to low), meaning the guest might
 * never get any MFN's under the 4GB mark.
 *
 */

36
37
#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt

38
39
#include <linux/bootmem.h>
#include <linux/dma-mapping.h>
40
#include <linux/export.h>
41
42
43
#include <xen/swiotlb-xen.h>
#include <xen/page.h>
#include <xen/xen-ops.h>
44
#include <xen/hvc-console.h>
45

46
#include <asm/dma-mapping.h>
47
#include <asm/xen/page-coherent.h>
48

49
#include <trace/events/swiotlb.h>
50
51
52
53
54
55
/*
 * Used to do a quick range check in swiotlb_tbl_unmap_single and
 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 * API.
 */

56
57
58
59
60
61
62
63
64
65
66
67
68
69
#ifndef CONFIG_X86
static unsigned long dma_alloc_coherent_mask(struct device *dev,
					    gfp_t gfp)
{
	unsigned long dma_mask = 0;

	dma_mask = dev->coherent_dma_mask;
	if (!dma_mask)
		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);

	return dma_mask;
}
#endif

70
71
72
73
74
75
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/*
 * Quick lookup value of the bus address of the IOTLB.
 */

76
static u64 start_dma_addr;
77

78
/*
79
 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
80
81
82
 * can be 32bit when dma_addr_t is 64bit leading to a loss in
 * information if the shift is done before casting to 64bit.
 */
83
static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84
{
85
86
	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
87

88
	dma |= paddr & ~XEN_PAGE_MASK;
89
90

	return dma;
91
92
}

93
static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94
{
95
96
	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97
98
	phys_addr_t paddr = dma;

99
	paddr |= baddr & ~XEN_PAGE_MASK;
100
101

	return paddr;
102
103
}

104
static inline dma_addr_t xen_virt_to_bus(void *address)
105
106
107
108
{
	return xen_phys_to_bus(virt_to_phys(address));
}

109
static int check_pages_physically_contiguous(unsigned long xen_pfn,
110
111
112
					     unsigned int offset,
					     size_t length)
{
113
	unsigned long next_bfn;
114
115
116
	int i;
	int nr_pages;

117
118
	next_bfn = pfn_to_bfn(xen_pfn);
	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
119
120

	for (i = 1; i < nr_pages; i++) {
121
		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
122
123
124
125
126
			return 0;
	}
	return 1;
}

127
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128
{
129
130
	unsigned long xen_pfn = XEN_PFN_DOWN(p);
	unsigned int offset = p & ~XEN_PAGE_MASK;
131

132
	if (offset + size <= XEN_PAGE_SIZE)
133
		return 0;
134
	if (check_pages_physically_contiguous(xen_pfn, offset, size))
135
136
137
138
139
140
		return 0;
	return 1;
}

static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
{
141
142
143
	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
144
145
146
147
148

	/* If the address is outside our domain, it CAN
	 * have the same virtual address as another address
	 * in our domain. Therefore _only_ check address within our domain.
	 */
149
	if (pfn_valid(PFN_DOWN(paddr))) {
150
151
152
153
154
155
156
157
158
159
160
161
162
		return paddr >= virt_to_phys(xen_io_tlb_start) &&
		       paddr < virt_to_phys(xen_io_tlb_end);
	}
	return 0;
}

static int max_dma_bits = 32;

static int
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{
	int i, rc;
	int dma_bits;
163
	dma_addr_t dma_handle;
164
	phys_addr_t p = virt_to_phys(buf);
165
166
167
168
169
170
171
172
173

	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;

	i = 0;
	do {
		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);

		do {
			rc = xen_create_contiguous_region(
174
				p + (i << IO_TLB_SHIFT),
175
				get_order(slabs << IO_TLB_SHIFT),
176
				dma_bits, &dma_handle);
177
178
179
180
181
182
183
184
		} while (rc && dma_bits++ < max_dma_bits);
		if (rc)
			return rc;

		i += slabs;
	} while (i < nslabs);
	return 0;
}
185
186
187
188
189
190
191
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
{
	if (!nr_tbl) {
		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
	} else
		xen_io_tlb_nslabs = nr_tbl;
192

193
194
	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
enum xen_swiotlb_err {
	XEN_SWIOTLB_UNKNOWN = 0,
	XEN_SWIOTLB_ENOMEM,
	XEN_SWIOTLB_EFIXUP
};

static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
{
	switch (err) {
	case XEN_SWIOTLB_ENOMEM:
		return "Cannot allocate Xen-SWIOTLB buffer\n";
	case XEN_SWIOTLB_EFIXUP:
		return "Failed to get contiguous memory for DMA from Xen!\n"\
		    "You either: don't have the permissions, do not have"\
		    " enough free memory under 4GB, or the hypervisor memory"\
		    " is too fragmented!";
	default:
		break;
	}
	return "";
}
217
int __ref xen_swiotlb_init(int verbose, bool early)
218
{
219
	unsigned long bytes, order;
220
	int rc = -ENOMEM;
221
	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
222
	unsigned int repeat = 3;
223

224
	xen_io_tlb_nslabs = swiotlb_nr_tbl();
225
retry:
226
	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
227
	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
228
229
230
	/*
	 * Get IO TLB memory from any location.
	 */
231
232
233
234
235
236
	if (early)
		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
	else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
237
			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
238
239
240
241
242
			if (xen_io_tlb_start)
				break;
			order--;
		}
		if (order != get_order(bytes)) {
243
244
			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
				(PAGE_SIZE << order) >> 20);
245
246
247
248
			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
		}
	}
249
	if (!xen_io_tlb_start) {
250
		m_ret = XEN_SWIOTLB_ENOMEM;
251
252
		goto error;
	}
253
254
255
256
257
258
259
	xen_io_tlb_end = xen_io_tlb_start + bytes;
	/*
	 * And replace that memory with pages under 4GB.
	 */
	rc = xen_swiotlb_fixup(xen_io_tlb_start,
			       bytes,
			       xen_io_tlb_nslabs);
260
	if (rc) {
261
262
263
264
265
266
		if (early)
			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
		else {
			free_pages((unsigned long)xen_io_tlb_start, order);
			xen_io_tlb_start = NULL;
		}
267
		m_ret = XEN_SWIOTLB_EFIXUP;
268
		goto error;
269
	}
270
	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
271
	if (early) {
272
273
274
		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
			 verbose))
			panic("Cannot allocate SWIOTLB buffer");
275
276
		rc = 0;
	} else
277
		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
278
279
280
281

	if (!rc)
		swiotlb_set_max_segment(PAGE_SIZE);

282
	return rc;
283
error:
284
285
286
	if (repeat--) {
		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
					(xen_io_tlb_nslabs >> 1));
287
288
		pr_info("Lowering to %luMB\n",
			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
289
290
		goto retry;
	}
291
	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
292
293
294
295
296
	if (early)
		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
	else
		free_pages((unsigned long)xen_io_tlb_start, order);
	return rc;
297
298
299
}
void *
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
300
			   dma_addr_t *dma_handle, gfp_t flags,
301
			   unsigned long attrs)
302
303
304
305
{
	void *ret;
	int order = get_order(size);
	u64 dma_mask = DMA_BIT_MASK(32);
306
307
	phys_addr_t phys;
	dma_addr_t dev_addr;
308
309
310
311
312
313
314
315
316

	/*
	* Ignore region specifiers - the kernel's ideas of
	* pseudo-phys memory layout has nothing to do with the
	* machine physical layout.  We can't allocate highmem
	* because we can't return a pointer to it.
	*/
	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);

317
318
319
320
321
322
	/* On ARM this function returns an ioremap'ped virtual address for
	 * which virt_to_phys doesn't return the corresponding physical
	 * address. In fact on ARM virt_to_phys only works for kernel direct
	 * mapped RAM memory. Also see comment below.
	 */
	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
323

324
325
326
	if (!ret)
		return ret;

327
	if (hwdev && hwdev->coherent_dma_mask)
328
		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
329

330
331
332
333
334
	/* At this point dma_handle is the physical address, next we are
	 * going to set it to the machine address.
	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
	 * to *dma_handle. */
	phys = *dma_handle;
335
336
337
338
339
	dev_addr = xen_phys_to_bus(phys);
	if (((dev_addr + size - 1 <= dma_mask)) &&
	    !range_straddles_page_boundary(phys, size))
		*dma_handle = dev_addr;
	else {
340
		if (xen_create_contiguous_region(phys, order,
341
						 fls64(dma_mask), dma_handle) != 0) {
342
			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
343
344
345
			return NULL;
		}
	}
346
	memset(ret, 0, size);
347
348
349
350
351
352
	return ret;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);

void
xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
353
			  dma_addr_t dev_addr, unsigned long attrs)
354
355
{
	int order = get_order(size);
356
357
	phys_addr_t phys;
	u64 dma_mask = DMA_BIT_MASK(32);
358

359
360
361
	if (hwdev && hwdev->coherent_dma_mask)
		dma_mask = hwdev->coherent_dma_mask;

362
363
364
	/* do not use virt_to_phys because on ARM it doesn't return you the
	 * physical address */
	phys = xen_bus_to_phys(dev_addr);
365
366
367

	if (((dev_addr + size - 1 > dma_mask)) ||
	    range_straddles_page_boundary(phys, size))
368
		xen_destroy_contiguous_region(phys, order);
369

370
	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
371
372
373
374
375
376
377
378
379
380
381
382
383
384
}
EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);


/*
 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 * physical address to use is returned.
 *
 * Once the device is given the dma address, the device owns this memory until
 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 */
dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
				unsigned long offset, size_t size,
				enum dma_data_direction dir,
385
				unsigned long attrs)
386
{
387
	phys_addr_t map, phys = page_to_phys(page) + offset;
388
389
390
391
392
393
394
395
396
	dma_addr_t dev_addr = xen_phys_to_bus(phys);

	BUG_ON(dir == DMA_NONE);
	/*
	 * If the address happens to be in the device's DMA window,
	 * we can safely return the device addr and not worry about bounce
	 * buffering it.
	 */
	if (dma_capable(dev, dev_addr, size) &&
397
	    !range_straddles_page_boundary(phys, size) &&
398
		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
399
		(swiotlb_force != SWIOTLB_FORCE)) {
400
401
402
		/* we are not interested in the dma_addr returned by
		 * xen_dma_map_page, only in the potential cache flushes executed
		 * by the function. */
403
		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
404
		return dev_addr;
405
	}
406
407
408
409

	/*
	 * Oh well, have to allocate and map a bounce buffer.
	 */
410
411
	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);

412
413
	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
				     attrs);
414
	if (map == SWIOTLB_MAP_ERROR)
415
416
		return DMA_ERROR_CODE;

417
	dev_addr = xen_phys_to_bus(map);
418
	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
419
					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
420
421
422
423

	/*
	 * Ensure that the address returned is DMA'ble
	 */
424
425
426
	if (dma_capable(dev, dev_addr, size))
		return dev_addr;

427
428
	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
429
430

	return DMA_ERROR_CODE;
431
432
433
434
435
436
437
438
439
440
441
442
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);

/*
 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 * other usages are undefined.
 *
 * After this call, reads by the cpu to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443
			     size_t size, enum dma_data_direction dir,
444
			     unsigned long attrs)
445
446
447
448
449
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

450
	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
451

452
453
	/* NOTE: We use dev_addr here, not paddr! */
	if (is_xen_swiotlb_buffer(dev_addr)) {
454
		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
		return;
	}

	if (dir != DMA_FROM_DEVICE)
		return;

	/*
	 * phys_to_virt doesn't work with hihgmem page but we could
	 * call dma_mark_clean() with hihgmem page here. However, we
	 * are fine since dma_mark_clean() is null on POWERPC. We can
	 * make dma_mark_clean() take a physical address if necessary.
	 */
	dma_mark_clean(phys_to_virt(paddr), size);
}

void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
			    size_t size, enum dma_data_direction dir,
472
			    unsigned long attrs)
473
{
474
	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);

/*
 * Make physical memory consistent for a single streaming mode DMA translation
 * after a transfer.
 *
 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 * using the cpu, yet do not wish to teardown the dma mapping, you must
 * call this function before doing so.  At the next point you give the dma
 * address back to the card, you must first perform a
 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 */
static void
xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
			size_t size, enum dma_data_direction dir,
			enum dma_sync_target target)
{
	phys_addr_t paddr = xen_bus_to_phys(dev_addr);

	BUG_ON(dir == DMA_NONE);

497
	if (target == SYNC_FOR_CPU)
498
		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
499

500
	/* NOTE: We use dev_addr here, not paddr! */
501
	if (is_xen_swiotlb_buffer(dev_addr))
502
		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503
504

	if (target == SYNC_FOR_DEVICE)
505
		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

	if (dir != DMA_FROM_DEVICE)
		return;

	dma_mark_clean(phys_to_virt(paddr), size);
}

void
xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
				size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);

void
xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
				   size_t size, enum dma_data_direction dir)
{
	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);

/*
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the above xen_swiotlb_map_page
 * interface.  Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}(SG).
 *
 * NOTE: An implementation may be able to use a smaller number of
 *       DMA address/length pairs than there are SG table elements.
 *       (for example via virtual mapping capabilities)
 *       The routine returns the number of addr/length pairs actually
 *       used, at most nents.
 *
 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 * same here.
 */
int
xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			 int nelems, enum dma_data_direction dir,
548
			 unsigned long attrs)
549
550
551
552
553
554
555
556
557
558
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i) {
		phys_addr_t paddr = sg_phys(sg);
		dma_addr_t dev_addr = xen_phys_to_bus(paddr);

559
		if (swiotlb_force == SWIOTLB_FORCE ||
560
		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
561
562
		    !dma_capable(hwdev, dev_addr, sg->length) ||
		    range_straddles_page_boundary(paddr, sg->length)) {
563
564
565
566
			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
								 start_dma_addr,
								 sg_phys(sg),
								 sg->length,
567
								 dir, attrs);
568
			if (map == SWIOTLB_MAP_ERROR) {
569
				dev_warn(hwdev, "swiotlb buffer is full\n");
570
571
				/* Don't panic here, we expect map_sg users
				   to do proper error handling. */
572
				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
573
574
				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
							   attrs);
575
				sg_dma_len(sgl) = 0;
576
				return 0;
577
			}
578
			dev_addr = xen_phys_to_bus(map);
579
			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
580
						dev_addr,
581
582
583
584
						map & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
585
			sg->dma_address = dev_addr;
586
587
588
589
590
		} else {
			/* we are not interested in the dma_addr returned by
			 * xen_dma_map_page, only in the potential cache flushes executed
			 * by the function. */
			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
591
						dev_addr,
592
593
594
595
						paddr & ~PAGE_MASK,
						sg->length,
						dir,
						attrs);
596
			sg->dma_address = dev_addr;
597
		}
598
		sg_dma_len(sg) = sg->length;
599
600
601
602
603
604
605
606
607
608
609
610
	}
	return nelems;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);

/*
 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 * concerning calls here are the same as for swiotlb_unmap_page() above.
 */
void
xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
			   int nelems, enum dma_data_direction dir,
611
			   unsigned long attrs)
612
613
614
615
616
617
618
{
	struct scatterlist *sg;
	int i;

	BUG_ON(dir == DMA_NONE);

	for_each_sg(sgl, sg, nelems, i)
619
		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

}
EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);

/*
 * Make physical memory consistent for a set of streaming mode DMA translations
 * after a transfer.
 *
 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 * and usage.
 */
static void
xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
		    int nelems, enum dma_data_direction dir,
		    enum dma_sync_target target)
{
	struct scatterlist *sg;
	int i;

	for_each_sg(sgl, sg, nelems, i)
		xen_swiotlb_sync_single(hwdev, sg->dma_address,
641
					sg_dma_len(sg), dir, target);
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
}

void
xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
			    int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);

void
xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
			       int nelems, enum dma_data_direction dir)
{
	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
}
EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);

/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask to
 * this function.
 */
int
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
{
	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
672
673
674
675
676
677
678
679
680
681
682
683

int
xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
{
	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}
EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);