Commit d48200ba authored by Hante Meuleman's avatar Hante Meuleman Committed by John W. Linville
Browse files

brcmfmac: determine the wiphy->bands property correctly.



Use information from the device to determine the bands property
of the wiphy object. After this change the support of 80211n is
correctly presented in the bands property.
Reviewed-by: default avatarArend Van Spriel <arend@broadcom.com>
Reviewed-by: default avatarPieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: default avatarPiotr Haber <phaber@broadcom.com>
Signed-off-by: default avatarHante Meuleman <meuleman@broadcom.com>
Signed-off-by: default avatarArend van Spriel <arend@broadcom.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent aeecc574
......@@ -72,6 +72,7 @@
#define BRCMF_C_SET_WSEC 134
#define BRCMF_C_GET_PHY_NOISE 135
#define BRCMF_C_GET_BSS_INFO 136
#define BRCMF_C_GET_BANDLIST 140
#define BRCMF_C_SET_SCB_TIMEOUT 158
#define BRCMF_C_GET_PHYLIST 180
#define BRCMF_C_SET_SCAN_CHANNEL_TIME 185
......@@ -475,6 +476,11 @@ struct brcmf_sta_info_le {
__le32 rx_decrypt_failures; /* # of packet decrypted failed */
};
struct brcmf_chanspec_list {
__le32 count; /* # of entries */
__le32 element[1]; /* variable length uint32 list */
};
/*
* WLC_E_PROBRESP_MSG
* WLC_E_P2P_PROBREQ_MSG
......
......@@ -182,64 +182,6 @@ static struct ieee80211_channel __wl_5ghz_a_channels[] = {
CHAN5G(216, 0),
};
static struct ieee80211_channel __wl_5ghz_n_channels[] = {
CHAN5G(32, 0), CHAN5G(34, 0),
CHAN5G(36, 0), CHAN5G(38, 0),
CHAN5G(40, 0), CHAN5G(42, 0),
CHAN5G(44, 0), CHAN5G(46, 0),
CHAN5G(48, 0), CHAN5G(50, 0),
CHAN5G(52, 0), CHAN5G(54, 0),
CHAN5G(56, 0), CHAN5G(58, 0),
CHAN5G(60, 0), CHAN5G(62, 0),
CHAN5G(64, 0), CHAN5G(66, 0),
CHAN5G(68, 0), CHAN5G(70, 0),
CHAN5G(72, 0), CHAN5G(74, 0),
CHAN5G(76, 0), CHAN5G(78, 0),
CHAN5G(80, 0), CHAN5G(82, 0),
CHAN5G(84, 0), CHAN5G(86, 0),
CHAN5G(88, 0), CHAN5G(90, 0),
CHAN5G(92, 0), CHAN5G(94, 0),
CHAN5G(96, 0), CHAN5G(98, 0),
CHAN5G(100, 0), CHAN5G(102, 0),
CHAN5G(104, 0), CHAN5G(106, 0),
CHAN5G(108, 0), CHAN5G(110, 0),
CHAN5G(112, 0), CHAN5G(114, 0),
CHAN5G(116, 0), CHAN5G(118, 0),
CHAN5G(120, 0), CHAN5G(122, 0),
CHAN5G(124, 0), CHAN5G(126, 0),
CHAN5G(128, 0), CHAN5G(130, 0),
CHAN5G(132, 0), CHAN5G(134, 0),
CHAN5G(136, 0), CHAN5G(138, 0),
CHAN5G(140, 0), CHAN5G(142, 0),
CHAN5G(144, 0), CHAN5G(145, 0),
CHAN5G(146, 0), CHAN5G(147, 0),
CHAN5G(148, 0), CHAN5G(149, 0),
CHAN5G(150, 0), CHAN5G(151, 0),
CHAN5G(152, 0), CHAN5G(153, 0),
CHAN5G(154, 0), CHAN5G(155, 0),
CHAN5G(156, 0), CHAN5G(157, 0),
CHAN5G(158, 0), CHAN5G(159, 0),
CHAN5G(160, 0), CHAN5G(161, 0),
CHAN5G(162, 0), CHAN5G(163, 0),
CHAN5G(164, 0), CHAN5G(165, 0),
CHAN5G(166, 0), CHAN5G(168, 0),
CHAN5G(170, 0), CHAN5G(172, 0),
CHAN5G(174, 0), CHAN5G(176, 0),
CHAN5G(178, 0), CHAN5G(180, 0),
CHAN5G(182, 0), CHAN5G(184, 0),
CHAN5G(186, 0), CHAN5G(188, 0),
CHAN5G(190, 0), CHAN5G(192, 0),
CHAN5G(194, 0), CHAN5G(196, 0),
CHAN5G(198, 0), CHAN5G(200, 0),
CHAN5G(202, 0), CHAN5G(204, 0),
CHAN5G(206, 0), CHAN5G(208, 0),
CHAN5G(210, 0), CHAN5G(212, 0),
CHAN5G(214, 0), CHAN5G(216, 0),
CHAN5G(218, 0), CHAN5G(220, 0),
CHAN5G(222, 0), CHAN5G(224, 0),
CHAN5G(226, 0), CHAN5G(228, 0),
};
static struct ieee80211_supported_band __wl_band_2ghz = {
.band = IEEE80211_BAND_2GHZ,
.channels = __wl_2ghz_channels,
......@@ -256,12 +198,28 @@ static struct ieee80211_supported_band __wl_band_5ghz_a = {
.n_bitrates = wl_a_rates_size,
};
static struct ieee80211_supported_band __wl_band_5ghz_n = {
.band = IEEE80211_BAND_5GHZ,
.channels = __wl_5ghz_n_channels,
.n_channels = ARRAY_SIZE(__wl_5ghz_n_channels),
.bitrates = wl_a_rates,
.n_bitrates = wl_a_rates_size,
/* This is to override regulatory domains defined in cfg80211 module (reg.c)
* By default world regulatory domain defined in reg.c puts the flags
* NL80211_RRF_PASSIVE_SCAN and NL80211_RRF_NO_IBSS for 5GHz channels (for
* 36..48 and 149..165). With respect to these flags, wpa_supplicant doesn't
* start p2p operations on 5GHz channels. All the changes in world regulatory
* domain are to be done here.
*/
static const struct ieee80211_regdomain brcmf_regdom = {
.n_reg_rules = 4,
.alpha2 = "99",
.reg_rules = {
/* IEEE 802.11b/g, channels 1..11 */
REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
/* If any */
/* IEEE 802.11 channel 14 - Only JP enables
* this and for 802.11b only
*/
REG_RULE(2484-10, 2484+10, 20, 6, 20, 0),
/* IEEE 802.11a, channel 36..64 */
REG_RULE(5150-10, 5350+10, 40, 6, 20, 0),
/* IEEE 802.11a, channel 100..165 */
REG_RULE(5470-10, 5850+10, 40, 6, 20, 0), }
};
static const u32 __wl_cipher_suites[] = {
......@@ -4188,13 +4146,6 @@ static struct wiphy *brcmf_setup_wiphy(struct device *phydev)
wiphy->iface_combinations = brcmf_iface_combos;
wiphy->n_iface_combinations = ARRAY_SIZE(brcmf_iface_combos);
wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz;
wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; /* Set
* it as 11a by default.
* This will be updated with
* 11n phy tables in
* "ifconfig up"
* if phy has 11n capability
*/
wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wiphy->cipher_suites = __wl_cipher_suites;
wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites);
......@@ -4204,6 +4155,9 @@ static struct wiphy *brcmf_setup_wiphy(struct device *phydev)
wiphy->mgmt_stypes = brcmf_txrx_stypes;
wiphy->max_remain_on_channel_duration = 5000;
brcmf_wiphy_pno_params(wiphy);
brcmf_dbg(INFO, "Registering custom regulatory\n");
wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY;
wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);
err = wiphy_register(wiphy);
if (err < 0) {
brcmf_err("Could not register wiphy device (%d)\n", err);
......@@ -4927,34 +4881,248 @@ dongle_scantime_out:
return err;
}
static s32 wl_update_wiphybands(struct brcmf_cfg80211_info *cfg)
static s32 brcmf_construct_reginfo(struct brcmf_cfg80211_info *cfg, u32 bw_cap)
{
struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
struct ieee80211_channel *band_chan_arr;
struct brcmf_chanspec_list *list;
s32 err;
u8 *pbuf;
u32 i, j;
u32 total;
u16 chanspec;
enum ieee80211_band band;
u32 channel;
u32 *n_cnt;
bool ht40_allowed;
u32 index;
u32 ht40_flag;
bool update;
u32 array_size;
pbuf = kzalloc(BRCMF_DCMD_MEDLEN, GFP_KERNEL);
if (pbuf == NULL)
return -ENOMEM;
list = (struct brcmf_chanspec_list *)pbuf;
err = brcmf_fil_iovar_data_get(ifp, "chanspecs", pbuf,
BRCMF_DCMD_MEDLEN);
if (err) {
brcmf_err("get chanspecs error (%d)\n", err);
goto exit;
}
__wl_band_2ghz.n_channels = 0;
__wl_band_5ghz_a.n_channels = 0;
total = le32_to_cpu(list->count);
for (i = 0; i < total; i++) {
chanspec = (u16)le32_to_cpu(list->element[i]);
channel = CHSPEC_CHANNEL(chanspec);
if (CHSPEC_IS40(chanspec)) {
if (CHSPEC_SB_UPPER(chanspec))
channel += CH_10MHZ_APART;
else
channel -= CH_10MHZ_APART;
} else if (CHSPEC_IS80(chanspec)) {
brcmf_dbg(INFO, "HT80 center channel : %d\n",
channel);
continue;
}
if (CHSPEC_IS2G(chanspec) && (channel >= CH_MIN_2G_CHANNEL) &&
(channel <= CH_MAX_2G_CHANNEL)) {
band_chan_arr = __wl_2ghz_channels;
array_size = ARRAY_SIZE(__wl_2ghz_channels);
n_cnt = &__wl_band_2ghz.n_channels;
band = IEEE80211_BAND_2GHZ;
ht40_allowed = (bw_cap == WLC_N_BW_40ALL);
} else if (CHSPEC_IS5G(chanspec) &&
channel >= CH_MIN_5G_CHANNEL) {
band_chan_arr = __wl_5ghz_a_channels;
array_size = ARRAY_SIZE(__wl_5ghz_a_channels);
n_cnt = &__wl_band_5ghz_a.n_channels;
band = IEEE80211_BAND_5GHZ;
ht40_allowed = !(bw_cap == WLC_N_BW_20ALL);
} else {
brcmf_err("Invalid channel Sepc. 0x%x.\n", chanspec);
continue;
}
if (!ht40_allowed && CHSPEC_IS40(chanspec))
continue;
update = false;
for (j = 0; (j < *n_cnt && (*n_cnt < array_size)); j++) {
if (band_chan_arr[j].hw_value == channel) {
update = true;
break;
}
}
if (update)
index = j;
else
index = *n_cnt;
if (index < array_size) {
band_chan_arr[index].center_freq =
ieee80211_channel_to_frequency(channel, band);
band_chan_arr[index].hw_value = channel;
if (CHSPEC_IS40(chanspec) && ht40_allowed) {
/* assuming the order is HT20, HT40 Upper,
* HT40 lower from chanspecs
*/
ht40_flag = band_chan_arr[index].flags &
IEEE80211_CHAN_NO_HT40;
if (CHSPEC_SB_UPPER(chanspec)) {
if (ht40_flag == IEEE80211_CHAN_NO_HT40)
band_chan_arr[index].flags &=
~IEEE80211_CHAN_NO_HT40;
band_chan_arr[index].flags |=
IEEE80211_CHAN_NO_HT40PLUS;
} else {
/* It should be one of
* IEEE80211_CHAN_NO_HT40 or
* IEEE80211_CHAN_NO_HT40PLUS
*/
band_chan_arr[index].flags &=
~IEEE80211_CHAN_NO_HT40;
if (ht40_flag == IEEE80211_CHAN_NO_HT40)
band_chan_arr[index].flags |=
IEEE80211_CHAN_NO_HT40MINUS;
}
} else {
band_chan_arr[index].flags =
IEEE80211_CHAN_NO_HT40;
if (band == IEEE80211_BAND_2GHZ)
channel |= WL_CHANSPEC_BAND_2G;
else
channel |= WL_CHANSPEC_BAND_5G;
channel |= WL_CHANSPEC_BW_20;
err = brcmf_fil_bsscfg_int_get(ifp,
"per_chan_info",
&channel);
if (!err) {
if (channel & WL_CHAN_RADAR)
band_chan_arr[index].flags |=
(IEEE80211_CHAN_RADAR |
IEEE80211_CHAN_NO_IBSS);
if (channel & WL_CHAN_PASSIVE)
band_chan_arr[index].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
}
}
if (!update)
(*n_cnt)++;
}
}
exit:
kfree(pbuf);
return err;
}
static s32 brcmf_update_wiphybands(struct brcmf_cfg80211_info *cfg)
{
struct brcmf_if *ifp = netdev_priv(cfg_to_ndev(cfg));
struct wiphy *wiphy;
s32 phy_list;
u32 band_list[3];
u32 nmode;
u32 bw_cap = 0;
s8 phy;
s32 err = 0;
s32 err;
u32 nband;
s32 i;
struct ieee80211_supported_band *bands[IEEE80211_NUM_BANDS];
s32 index;
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_PHYLIST,
&phy_list, sizeof(phy_list));
if (err) {
brcmf_err("error (%d)\n", err);
brcmf_err("BRCMF_C_GET_PHYLIST error (%d)\n", err);
return err;
}
phy = ((char *)&phy_list)[0];
brcmf_dbg(INFO, "%c phy\n", phy);
if (phy == 'n' || phy == 'a') {
wiphy = cfg_to_wiphy(cfg);
wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n;
brcmf_dbg(INFO, "BRCMF_C_GET_PHYLIST reported: %c phy\n", phy);
err = brcmf_fil_cmd_data_get(ifp, BRCMF_C_GET_BANDLIST,
&band_list, sizeof(band_list));
if (err) {
brcmf_err("BRCMF_C_GET_BANDLIST error (%d)\n", err);
return err;
}
brcmf_dbg(INFO, "BRCMF_C_GET_BANDLIST reported: 0x%08x 0x%08x 0x%08x phy\n",
band_list[0], band_list[1], band_list[2]);
err = brcmf_fil_iovar_int_get(ifp, "nmode", &nmode);
if (err) {
brcmf_err("nmode error (%d)\n", err);
} else {
err = brcmf_fil_iovar_int_get(ifp, "mimo_bw_cap", &bw_cap);
if (err)
brcmf_err("mimo_bw_cap error (%d)\n", err);
}
brcmf_dbg(INFO, "nmode=%d, mimo_bw_cap=%d\n", nmode, bw_cap);
err = brcmf_construct_reginfo(cfg, bw_cap);
if (err) {
brcmf_err("brcmf_construct_reginfo failed (%d)\n", err);
return err;
}
nband = band_list[0];
memset(bands, 0, sizeof(bands));
for (i = 1; i <= nband && i < ARRAY_SIZE(band_list); i++) {
index = -1;
if ((band_list[i] == WLC_BAND_5G) &&
(__wl_band_5ghz_a.n_channels > 0)) {
index = IEEE80211_BAND_5GHZ;
bands[index] = &__wl_band_5ghz_a;
if ((bw_cap == WLC_N_BW_40ALL) ||
(bw_cap == WLC_N_BW_20IN2G_40IN5G))
bands[index]->ht_cap.cap |=
IEEE80211_HT_CAP_SGI_40;
} else if ((band_list[i] == WLC_BAND_2G) &&
(__wl_band_2ghz.n_channels > 0)) {
index = IEEE80211_BAND_2GHZ;
bands[index] = &__wl_band_2ghz;
if (bw_cap == WLC_N_BW_40ALL)
bands[index]->ht_cap.cap |=
IEEE80211_HT_CAP_SGI_40;
}
if ((index >= 0) && nmode) {
bands[index]->ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
bands[index]->ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
bands[index]->ht_cap.ht_supported = true;
bands[index]->ht_cap.ampdu_factor =
IEEE80211_HT_MAX_AMPDU_64K;
bands[index]->ht_cap.ampdu_density =
IEEE80211_HT_MPDU_DENSITY_16;
/* An HT shall support all EQM rates for one spatial
* stream
*/
bands[index]->ht_cap.mcs.rx_mask[0] = 0xff;
}
}
wiphy = cfg_to_wiphy(cfg);
wiphy->bands[IEEE80211_BAND_2GHZ] = bands[IEEE80211_BAND_2GHZ];
wiphy->bands[IEEE80211_BAND_5GHZ] = bands[IEEE80211_BAND_5GHZ];
wiphy_apply_custom_regulatory(wiphy, &brcmf_regdom);
return err;
}
static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_info *cfg)
{
return wl_update_wiphybands(cfg);
return brcmf_update_wiphybands(cfg);
}
static s32 brcmf_config_dongle(struct brcmf_cfg80211_info *cfg)
......
......@@ -32,8 +32,9 @@
#define CH_20MHZ_APART 4
#define CH_10MHZ_APART 2
#define CH_5MHZ_APART 1 /* 2G band channels are 5 Mhz apart */
#define CH_MIN_2G_CHANNEL 1
#define CH_MAX_2G_CHANNEL 14 /* Max channel in 2G band */
#define BRCM_MAX_2G_CHANNEL CH_MAX_2G_CHANNEL /* legacy define */
#define CH_MIN_5G_CHANNEL 34
/* bandstate array indices */
#define BAND_2G_INDEX 0 /* wlc->bandstate[x] index */
......@@ -60,6 +61,7 @@
#define WL_CHANSPEC_BW_10 0x0400
#define WL_CHANSPEC_BW_20 0x0800
#define WL_CHANSPEC_BW_40 0x0C00
#define WL_CHANSPEC_BW_80 0x2000
#define WL_CHANSPEC_BAND_MASK 0xf000
#define WL_CHANSPEC_BAND_SHIFT 12
......@@ -67,6 +69,25 @@
#define WL_CHANSPEC_BAND_2G 0x2000
#define INVCHANSPEC 255
#define WL_CHAN_VALID_HW (1 << 0) /* valid with current HW */
#define WL_CHAN_VALID_SW (1 << 1) /* valid with country sett. */
#define WL_CHAN_BAND_5G (1 << 2) /* 5GHz-band channel */
#define WL_CHAN_RADAR (1 << 3) /* radar sensitive channel */
#define WL_CHAN_INACTIVE (1 << 4) /* inactive due to radar */
#define WL_CHAN_PASSIVE (1 << 5) /* channel in passive mode */
#define WL_CHAN_RESTRICTED (1 << 6) /* restricted use channel */
/* values for band specific 40MHz capabilities */
#define WLC_N_BW_20ALL 0
#define WLC_N_BW_40ALL 1
#define WLC_N_BW_20IN2G_40IN5G 2
/* band types */
#define WLC_BAND_AUTO 0 /* auto-select */
#define WLC_BAND_5G 1 /* 5 Ghz */
#define WLC_BAND_2G 2 /* 2.4 Ghz */
#define WLC_BAND_ALL 3 /* all bands */
#define CHSPEC_CHANNEL(chspec) ((u8)((chspec) & WL_CHANSPEC_CHAN_MASK))
#define CHSPEC_BAND(chspec) ((chspec) & WL_CHANSPEC_BAND_MASK)
......@@ -79,10 +100,11 @@
#define CHSPEC_IS20(chspec) \
(((chspec) & WL_CHANSPEC_BW_MASK) == WL_CHANSPEC_BW_20)
#ifndef CHSPEC_IS40
#define CHSPEC_IS40(chspec) \
(((chspec) & WL_CHANSPEC_BW_MASK) == WL_CHANSPEC_BW_40)
#endif
#define CHSPEC_IS80(chspec) \
(((chspec) & WL_CHANSPEC_BW_MASK) == WL_CHANSPEC_BW_80)
#define CHSPEC_IS5G(chspec) \
(((chspec) & WL_CHANSPEC_BAND_MASK) == WL_CHANSPEC_BAND_5G)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment