Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
underlying flash does not admit of bad eraseblocks (e.g. NOR
flash), this value is ignored.
NAND datasheets often specify the minimum and maximum NVM
(Number of Valid Blocks) for the flashes' endurance lifetime.
The maximum expected bad eraseblocks per 1024 eraseblocks
then can be calculated as "1024 * (1 - MinNVB / MaxNVB)",
which gives 20 for most NANDs (MaxNVB is basically the total
count of eraseblocks on the chip).
To put it differently, if this value is 20, UBI will try to
reserve about 1.9% of physical eraseblocks for bad blocks
handling. And that will be 1.9% of eraseblocks on the entire
NAND chip, not just the MTD partition UBI attaches. This means
that if you have, say, a NAND flash chip admits maximum 40 bad
eraseblocks, and it is split on two MTD partitions of the same
size, UBI will reserve 40 eraseblocks when attaching a
partition.
default: 20
CONFIG_MTD_UBI_FASTMAP
Fastmap is a mechanism which allows attaching an UBI device
in nearly constant time. Instead of scanning the whole MTD device it
only has to locate a checkpoint (called fastmap) on the device.
The on-flash fastmap contains all information needed to attach
the device. Using fastmap makes only sense on large devices where
attaching by scanning takes long. UBI will not automatically install
a fastmap on old images, but you can set the UBI parameter
CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note
that fastmap-enabled images are still usable with UBI implementations
without fastmap support. On typical flash devices the whole fastmap
fits into one PEB. UBI will reserve PEBs to hold two fastmaps.
CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT
Set this parameter to enable fastmap automatically on images
without a fastmap.
default: 0
CONFIG_MTD_UBI_FM_DEBUG
Enable UBI fastmap debug
default: 0
- SPL framework
CONFIG_SPL
Enable building of SPL globally.
CONFIG_SPL_PANIC_ON_RAW_IMAGE
When defined, SPL will panic() if the image it has
loaded does not have a signature.
Defining this is useful when code which loads images
in SPL cannot guarantee that absolutely all read errors
will be caught.
An example is the LPC32XX MLC NAND driver, which will
consider that a completely unreadable NAND block is bad,
and thus should be skipped silently.
CONFIG_SPL_DISPLAY_PRINT
For ARM, enable an optional function to print more information
about the running system.
CONFIG_SPL_MPC83XX_WAIT_FOR_NAND
Set this for NAND SPL on PPC mpc83xx targets, so that
start.S waits for the rest of the SPL to load before
continuing (the hardware starts execution after just
loading the first page rather than the full 4K).
CONFIG_SPL_UBI
Support for a lightweight UBI (fastmap) scanner and
loader
Sean Anderson
committed
CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_SIZE,
CONFIG_SYS_NAND_OOBSIZE, CONFIG_SYS_NAND_BLOCK_SIZE,
CONFIG_SYS_NAND_BAD_BLOCK_POS, CFG_SYS_NAND_ECCPOS,
CFG_SYS_NAND_ECCSIZE, CFG_SYS_NAND_ECCBYTES
Defines the size and behavior of the NAND that SPL uses
CFG_SYS_NAND_U_BOOT_DST
Location in memory to load U-Boot to
CFG_SYS_NAND_U_BOOT_SIZE
CFG_SYS_NAND_U_BOOT_START
Entry point in loaded image to jump to
CONFIG_SPL_RAM_DEVICE
Support for running image already present in ram, in SPL binary
Printing information about a FIT image adds quite a bit of
code to SPL. So this is normally disabled in SPL. Use this
option to re-enable it. This will affect the output of the
bootm command when booting a FIT image.
There are common interrupt_init() and timer_interrupt()
for all PPC archs. interrupt_init() calls interrupt_init_cpu()
for CPU specific initialization. interrupt_init_cpu()
should set decrementer_count to appropriate value. If
CPU resets decrementer automatically after interrupt
(ppc4xx) it should set decrementer_count to zero.
timer_interrupt() calls timer_interrupt_cpu() for CPU
specific handling. If board has watchdog / status_led
/ other_activity_monitor it works automatically from
general timer_interrupt().
Board initialization settings:
------------------------------
During Initialization u-boot calls a number of board specific functions
to allow the preparation of board specific prerequisites, e.g. pin setup
before drivers are initialized. To enable these callbacks the
following configuration macros have to be defined. Currently this is
architecture specific, so please check arch/your_architecture/lib/board.c
typically in board_init_f() and board_init_r().
- CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f()
- CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r()
- CONFIG_BOARD_LATE_INIT: Call board_late_init()
Configuration Settings:
-----------------------
- CONFIG_SYS_LONGHELP: Defined when you want long help messages included;
- CFG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default
width of the commands listed in the 'help' command output.
- CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to
- CFG_SYS_MEM_RESERVE_SECURE
Only implemented for ARMv8 for now.
If defined, the size of CFG_SYS_MEM_RESERVE_SECURE memory
is substracted from total RAM and won't be reported to OS.
This memory can be used as secure memory. A variable
gd->arch.secure_ram is used to track the location. In systems
the RAM base is not zero, or RAM is divided into banks,
this variable needs to be recalcuated to get the address.
- CFG_SYS_SDRAM_BASE:
Physical start address of SDRAM. _Must_ be 0 here.
- CONFIG_SYS_MALLOC_LEN:
Maximum size of memory mapped by the startup code of
the Linux kernel; all data that must be processed by
the Linux kernel (bd_info, boot arguments, FDT blob if
used) must be put below this limit, unless "bootm_low"
environment variable is defined and non-zero. In such case
all data for the Linux kernel must be between "bootm_low"
and "bootm_low" + CFG_SYS_BOOTMAPSZ. The environment
variable "bootm_mapsize" will override the value of
CFG_SYS_BOOTMAPSZ. If CFG_SYS_BOOTMAPSZ is undefined,
then the value in "bootm_size" will be used instead.
- CONFIG_SYS_BOOT_GET_CMDLINE:
Enables allocating and saving kernel cmdline in space between
"bootm_low" and "bootm_low" + BOOTMAPSZ.
- CONFIG_SYS_BOOT_GET_KBD:
Enables allocating and saving a kernel copy of the bd_info in
space between "bootm_low" and "bootm_low" + BOOTMAPSZ.
- CONFIG_SYS_FLASH_PROTECTION
If defined, hardware flash sectors protection is used
instead of U-Boot software protection.
- CONFIG_SYS_FLASH_CFI:
Define if the flash driver uses extra elements in the
common flash structure for storing flash geometry.
- CONFIG_FLASH_CFI_DRIVER
This option also enables the building of the cfi_flash driver
in the drivers directory
- CONFIG_FLASH_CFI_MTD
This option enables the building of the cfi_mtd driver
in the drivers directory. The driver exports CFI flash
to the MTD layer.
- CONFIG_SYS_FLASH_USE_BUFFER_WRITE
Guennadi Liakhovetski
committed
Use buffered writes to flash.
- CFG_ENV_FLAGS_LIST_STATIC
Enable validation of the values given to environment variables when
calling env set. Variables can be restricted to only decimal,
hexadecimal, or boolean. If CONFIG_CMD_NET is also defined,
the variables can also be restricted to IP address or MAC address.
The format of the list is:
type_attribute = [s|d|x|b|i|m]
access_attribute = [a|r|o|c]
attributes = type_attribute[access_attribute]
entry = variable_name[:attributes]
list = entry[,list]
The type attributes are:
s - String (default)
d - Decimal
x - Hexadecimal
b - Boolean ([1yYtT|0nNfF])
i - IP address
m - MAC address
The access attributes are:
a - Any (default)
r - Read-only
o - Write-once
c - Change-default
- CONFIG_ENV_FLAGS_LIST_DEFAULT
Define this to a list (string) to define the ".flags"
environment variable in the default or embedded environment.
- CFG_ENV_FLAGS_LIST_STATIC
Define this to a list (string) to define validation that
should be done if an entry is not found in the ".flags"
environment variable. To override a setting in the static
list, simply add an entry for the same variable name to the
".flags" variable.
If CONFIG_REGEX is defined, the variable_name above is evaluated as a
regular expression. This allows multiple variables to define the same
flags without explicitly listing them for each variable.
The following definitions that deal with the placement and management
of environment data (variable area); in general, we support the
following configurations:
BE CAREFUL! The first access to the environment happens quite early
in U-Boot initialization (when we try to get the setting of for the
console baudrate). You *MUST* have mapped your NVRAM area then, or
U-Boot will hang.
Please note that even with NVRAM we still use a copy of the
environment in RAM: we could work on NVRAM directly, but we want to
keep settings there always unmodified except somebody uses "saveenv"
to save the current settings.
BE CAREFUL! For some special cases, the local device can not use
"saveenv" command. For example, the local device will get the
environment stored in a remote NOR flash by SRIO or PCIE link,
but it can not erase, write this NOR flash by SRIO or PCIE interface.
Guennadi Liakhovetski
committed
- CONFIG_NAND_ENV_DST
Defines address in RAM to which the nand_spl code should copy the
environment. If redundant environment is used, it will be copied to
CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE.
Please note that the environment is read-only until the monitor
has been relocated to RAM and a RAM copy of the environment has been
created; also, when using EEPROM you will have to use env_get_f()
The environment is protected by a CRC32 checksum. Before the monitor
is relocated into RAM, as a result of a bad CRC you will be working
with the compiled-in default environment - *silently*!!! [This is
necessary, because the first environment variable we need is the
"baudrate" setting for the console - if we have a bad CRC, we don't
have any device yet where we could complain.]
Note: once the monitor has been relocated, then it will complain if
the default environment is used; a new CRC is computed as soon as you
use the "saveenv" command to store a valid environment.
- CONFIG_SYS_FAULT_MII_ADDR:
MII address of the PHY to check for the Ethernet link state.
- CONFIG_DISPLAY_BOARDINFO
Display information about the board that U-Boot is running on
when U-Boot starts up. The board function checkboard() is called
to do this.
- CONFIG_DISPLAY_BOARDINFO_LATE
Similar to the previous option, but display this information
later, once stdio is running and output goes to the LCD, if
present.
---------------------------------------------------
- CONFIG_SYS_CACHELINE_SIZE:
- CONFIG_SYS_CCSRBAR_DEFAULT:
Default (power-on reset) physical address of CCSR on Freescale
PowerPC SOCs.
Virtual address of CCSR. On a 32-bit build, this is typically
the same value as CONFIG_SYS_CCSRBAR_DEFAULT.
Physical address of CCSR. CCSR can be relocated to a new
physical address, if desired. In this case, this macro should
be set to that address. Otherwise, it should be set to the
same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR
is typically relocated on 36-bit builds. It is recommended
that this macro be defined via the _HIGH and _LOW macros:
#define CFG_SYS_CCSRBAR_PHYS ((CFG_SYS_CCSRBAR_PHYS_HIGH
* 1ull) << 32 | CFG_SYS_CCSRBAR_PHYS_LOW)
- CFG_SYS_CCSRBAR_PHYS_HIGH:
Bits 33-36 of CFG_SYS_CCSRBAR_PHYS. This value is typically
either 0 (32-bit build) or 0xF (36-bit build). This macro is
used in assembly code, so it must not contain typecasts or
integer size suffixes (e.g. "ULL").
- CFG_SYS_CCSRBAR_PHYS_LOW:
Lower 32-bits of CFG_SYS_CCSRBAR_PHYS. This macro is
used in assembly code, so it must not contain typecasts or
integer size suffixes (e.g. "ULL").
- CONFIG_SYS_IMMR: Physical address of the Internal Memory.
doing! (11-4) [MPC8xx systems only]
Start address of memory area that can be used for
initial data and stack; please note that this must be
writable memory that is working WITHOUT special
initialization, i. e. you CANNOT use normal RAM which
will become available only after programming the
memory controller and running certain initialization
sequences.
U-Boot uses the following memory types:
- MPC8xx: IMMR (internal memory of the CPU)
- CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27)
- CONFIG_SYS_OR_TIMING_SDRAM:
- CONFIG_SYS_SRIOn_MEM_VIRT:
Virtual Address of SRIO port 'n' memory region
- CONFIG_SYS_SRIOn_MEM_PHYxS:
Physical Address of SRIO port 'n' memory region
- CONFIG_SYS_SRIOn_MEM_SIZE:
Size of SRIO port 'n' memory region
- CONFIG_SYS_NAND_BUSWIDTH_16BIT
Defined to tell the NAND controller that the NAND chip is using
a 16 bit bus.
Not all NAND drivers use this symbol.
Example of drivers that use it:
- drivers/mtd/nand/raw/ndfc.c
- drivers/mtd/nand/raw/mxc_nand.c
- CONFIG_SYS_NDFC_EBC0_CFG
Sets the EBC0_CFG register for the NDFC. If not defined
a default value will be used.
- CONFIG_SYS_SPD_BUS_NUM
If SPD EEPROM is on an I2C bus other than the first
one, specify here. Note that the value must resolve
to something your driver can deal with.
- CONFIG_FSL_DDR_INTERACTIVE
Enable interactive DDR debugging. See doc/README.fsl-ddr.
- CONFIG_FSL_DDR_SYNC_REFRESH
Enable sync of refresh for multiple controllers.
- CONFIG_FSL_DDR_BIST
Enable built-in memory test for Freescale DDR controllers.
- CONFIG_RMII
Enable RMII mode for all FECs.
Note that this is a global option, we can't
have one FEC in standard MII mode and another in RMII mode.
- CONFIG_CRC32_VERIFY
Add a verify option to the crc32 command.
The syntax is:
=> crc32 -v <address> <count> <crc32>
Where address/count indicate a memory area
and crc32 is the correct crc32 which the
area should have.
- CONFIG_LOOPW
Add the "loopw" memory command. This only takes effect if
the memory commands are activated globally (CONFIG_CMD_MEMORY).
Add the "mdc" and "mwc" memory commands. These are cyclic
"md/mw" commands.
Examples:
This command will print 4 bytes (10,11,12,13) each 500 ms.
This command will write 12345678 to address 100 all 10 ms.
This only takes effect if the memory commands are activated
Set when the currently running compilation is for an artifact
that will end up in one of the 'xPL' builds, i.e. SPL, TPL or
VPL. Code that needs phase-specific behaviour can check this,
or (where possible) use xpl_phase() instead.
Note that CONFIG_SPL_BUILD *is* always defined when either
of CONFIG_TPL_BUILD / CONFIG_VPL_BUILD is defined. This can be
counter-intuitive and should perhaps be changed.
Set when the currently running compilation is for an artifact
that will end up in the TPL build (as opposed to SPL, VPL or
U-Boot proper). Code that needs phase-specific behaviour can
check this, or (where possible) use xpl_phase() instead.
- CONFIG_VPL_BUILD
Set when the currently running compilation is for an artifact
that will end up in the VPL build (as opposed to the SPL, TPL
or U-Boot proper). Code that needs phase-specific behaviour can
check this, or (where possible) use xpl_phase() instead.
- CONFIG_ARCH_MAP_SYSMEM
Generally U-Boot (and in particular the md command) uses
effective address. It is therefore not necessary to regard
U-Boot address as virtual addresses that need to be translated
to physical addresses. However, sandbox requires this, since
it maintains its own little RAM buffer which contains all
addressable memory. This option causes some memory accesses
to be mapped through map_sysmem() / unmap_sysmem().
- CONFIG_X86_RESET_VECTOR
If defined, the x86 reset vector code is included. This is not
needed when U-Boot is running from Coreboot.
Freescale QE/FMAN Firmware Support:
-----------------------------------
The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the
loading of "firmware", which is encoded in the QE firmware binary format.
This firmware often needs to be loaded during U-Boot booting, so macros
are used to identify the storage device (NOR flash, SPI, etc) and the address
within that device.
Zhao Qiang
committed
- CONFIG_SYS_FMAN_FW_ADDR
The address in the storage device where the FMAN microcode is located. The
meaning of this address depends on which CONFIG_SYS_QE_FMAN_FW_IN_xxx macro
Zhao Qiang
committed
is also specified.
- CONFIG_SYS_QE_FW_ADDR
The address in the storage device where the QE microcode is located. The
meaning of this address depends on which CONFIG_SYS_QE_FMAN_FW_IN_xxx macro
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
is also specified.
- CONFIG_SYS_QE_FMAN_FW_LENGTH
The maximum possible size of the firmware. The firmware binary format
has a field that specifies the actual size of the firmware, but it
might not be possible to read any part of the firmware unless some
local storage is allocated to hold the entire firmware first.
- CONFIG_SYS_QE_FMAN_FW_IN_NOR
Specifies that QE/FMAN firmware is located in NOR flash, mapped as
normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the
virtual address in NOR flash.
- CONFIG_SYS_QE_FMAN_FW_IN_NAND
Specifies that QE/FMAN firmware is located in NAND flash.
CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash.
- CONFIG_SYS_QE_FMAN_FW_IN_MMC
Specifies that QE/FMAN firmware is located on the primary SD/MMC
device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device.
- CONFIG_SYS_QE_FMAN_FW_IN_REMOTE
Specifies that QE/FMAN firmware is located in the remote (master)
memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which
can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound
window->master inbound window->master LAW->the ucode address in
master's memory space.
Freescale Layerscape Management Complex Firmware Support:
---------------------------------------------------------
The Freescale Layerscape Management Complex (MC) supports the loading of
"firmware".
This firmware often needs to be loaded during U-Boot booting, so macros
are used to identify the storage device (NOR flash, SPI, etc) and the address
within that device.
- CONFIG_FSL_MC_ENET
Enable the MC driver for Layerscape SoCs.
Freescale Layerscape Debug Server Support:
-------------------------------------------
The Freescale Layerscape Debug Server Support supports the loading of
"Debug Server firmware" and triggering SP boot-rom.
This firmware often needs to be loaded during U-Boot booting.
- CONFIG_SYS_MC_RSV_MEM_ALIGN
Define alignment of reserved memory MC requires
Building the Software:
======================
Building U-Boot has been tested in several native build environments
and in many different cross environments. Of course we cannot support
all possibly existing versions of cross development tools in all
(potentially obsolete) versions. In case of tool chain problems we
recommend to use the ELDK (see https://www.denx.de/wiki/DULG/ELDK)
which is extensively used to build and test U-Boot.
If you are not using a native environment, it is assumed that you
have GNU cross compiling tools available in your path. In this case,
you must set the environment variable CROSS_COMPILE in your shell.
Note that no changes to the Makefile or any other source files are
necessary. For example using the ELDK on a 4xx CPU, please enter:
$ CROSS_COMPILE=ppc_4xx-
$ export CROSS_COMPILE
U-Boot is intended to be simple to build. After installing the
sources you must configure U-Boot for one specific board type. This
make NAME_defconfig
where "NAME_defconfig" is the name of one of the existing configu-
rations; see configs/*_defconfig for supported names.
Note: for some boards special configuration names may exist; check if
additional information is available from the board vendor; for
instance, the TQM823L systems are available without (standard)
or with LCD support. You can select such additional "features"
when choosing the configuration, i. e.
make TQM823L_defconfig
- will configure for a plain TQM823L, i. e. no LCD support
make TQM823L_LCD_defconfig
- will configure for a TQM823L with U-Boot console on LCD
etc.
Finally, type "make all", and you should get some working U-Boot
images ready for download to / installation on your system:
- "u-boot.bin" is a raw binary image
- "u-boot" is an image in ELF binary format
- "u-boot.srec" is in Motorola S-Record format

Daniel Schwierzeck
committed
User specific CPPFLAGS, AFLAGS and CFLAGS can be passed to the compiler by
setting the according environment variables KCPPFLAGS, KAFLAGS and KCFLAGS.
For example to treat all compiler warnings as errors:
make KCFLAGS=-Werror
Please be aware that the Makefiles assume you are using GNU make, so
for instance on NetBSD you might need to use "gmake" instead of
native "make".
If the system board that you have is not listed, then you will need
to port U-Boot to your hardware platform. To do this, follow these
steps:
1. Create a new directory to hold your board specific code. Add any
files you need. In your board directory, you will need at least
the "Makefile" and a "<board>.c".
2. Create a new configuration file "include/configs/<board>.h" for
your board.
3. If you're porting U-Boot to a new CPU, then also create a new
directory to hold your CPU specific code. Add any files you need.
4. Run "make <board>_defconfig" with your new name.
5. Type "make", and you should get a working "u-boot.srec" file
to be installed on your target system.
6. Debug and solve any problems that might arise.
[Of course, this last step is much harder than it sounds.]
Testing of U-Boot Modifications, Ports to New Hardware, etc.:
==============================================================
If you have modified U-Boot sources (for instance added a new board
or support for new devices, a new CPU, etc.) you are expected to
provide feedback to the other developers. The feedback normally takes
the form of a "patch", i.e. a context diff against a certain (latest
official or latest in the git repository) version of U-Boot sources.
But before you submit such a patch, please verify that your modifi-
cation did not break existing code. At least make sure that *ALL* of
the supported boards compile WITHOUT ANY compiler warnings. To do so,
just run the buildman script (tools/buildman/buildman), which will
configure and build U-Boot for ALL supported system. Be warned, this
will take a while. Please see the buildman README, or run 'buildman -H'
for documentation.
See also "U-Boot Porting Guide" below.
Monitor Commands - Overview:
============================
go - start application at address 'addr'
run - run commands in an environment variable
bootm - boot application image from memory
bootp - boot image via network using BootP/TFTP protocol
bootz - boot zImage from memory
tftpboot- boot image via network using TFTP protocol
and env variables "ipaddr" and "serverip"
(and eventually "gatewayip")
tftpput - upload a file via network using TFTP protocol
rarpboot- boot image via network using RARP/TFTP protocol
diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
loads - load S-Record file over serial line
loadb - load binary file over serial line (kermit mode)
loadm - load binary blob from source address to destination address
md - memory display
mm - memory modify (auto-incrementing)
nm - memory modify (constant address)
mw - memory write (fill)
cp - memory copy
cmp - memory compare
crc32 - checksum calculation
sspi - SPI utility commands
base - print or set address offset
printenv- print environment variables
setenv - set environment variables
saveenv - save environment variables to persistent storage
protect - enable or disable FLASH write protection
erase - erase FLASH memory
flinfo - print FLASH memory information
nand - NAND memory operations (see doc/README.nand)
bdinfo - print Board Info structure
iminfo - print header information for application image
coninfo - print console devices and informations
ide - IDE sub-system
loop - infinite loop on address range
loopw - infinite write loop on address range
mtest - simple RAM test
icache - enable or disable instruction cache
dcache - enable or disable data cache
reset - Perform RESET of the CPU
echo - echo args to console
version - print monitor version
help - print online help
? - alias for 'help'
Monitor Commands - Detailed Description:
========================================
TODO.
For now: just type "help <command>".
Note for Redundant Ethernet Interfaces:
=======================================
Some boards come with redundant Ethernet interfaces; U-Boot supports
such configurations and is capable of automatic selection of a
"working" interface when needed. MAC assignment works as follows:
Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
"eth1addr" (=>eth1), "eth2addr", ...
If the network interface stores some valid MAC address (for instance
in SROM), this is used as default address if there is NO correspon-
ding setting in the environment; if the corresponding environment
variable is set, this overrides the settings in the card; that means:
o If the SROM has a valid MAC address, and there is no address in the
environment, the SROM's address is used.
o If there is no valid address in the SROM, and a definition in the
environment exists, then the value from the environment variable is
used.
o If both the SROM and the environment contain a MAC address, and
both addresses are the same, this MAC address is used.
o If both the SROM and the environment contain a MAC address, and the
addresses differ, the value from the environment is used and a
warning is printed.
o If neither SROM nor the environment contain a MAC address, an error
is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case
a random, locally-assigned MAC is used.
If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses
will be programmed into hardware as part of the initialization process. This
may be skipped by setting the appropriate 'ethmacskip' environment variable.
The naming convention is as follows:
"ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc.
Image Formats:
==============
U-Boot is capable of booting (and performing other auxiliary operations on)
images in two formats:
New uImage format (FIT)
-----------------------
Flexible and powerful format based on Flattened Image Tree -- FIT (similar
to Flattened Device Tree). It allows the use of images with multiple
components (several kernels, ramdisks, etc.), with contents protected by
SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
Old uImage format
-----------------
Old image format is based on binary files which can be basically anything,
preceded by a special header; see the definitions in include/image.h for
details; basically, the header defines the following image properties:
* Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
LynxOS, pSOS, QNX, RTEMS, INTEGRITY;
Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, INTEGRITY).
* Target CPU Architecture (Provisions for Alpha, ARM, Intel x86,
IA64, MIPS, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
Currently supported: ARM, Intel x86, MIPS, Nios II, PowerPC).
* Compression Type (uncompressed, gzip, bzip2)
* Load Address
* Entry Point
* Image Name
* Image Timestamp
The header is marked by a special Magic Number, and both the header
and the data portions of the image are secured against corruption by
CRC32 checksums.
Linux Support:
==============
Although U-Boot should support any OS or standalone application
easily, the main focus has always been on Linux during the design of
U-Boot.
U-Boot includes many features that so far have been part of some
special "boot loader" code within the Linux kernel. Also, any
"initrd" images to be used are no longer part of one big Linux image;
instead, kernel and "initrd" are separate images. This implementation
serves several purposes:
- the same features can be used for other OS or standalone
applications (for instance: using compressed images to reduce the
Flash memory footprint)
- it becomes much easier to port new Linux kernel versions because
lots of low-level, hardware dependent stuff are done by U-Boot
- the same Linux kernel image can now be used with different "initrd"
images; of course this also means that different kernel images can
be run with the same "initrd". This makes testing easier (you don't
have to build a new "zImage.initrd" Linux image when you just
change a file in your "initrd"). Also, a field-upgrade of the
software is easier now.
Porting Linux to U-Boot based systems:
---------------------------------------
U-Boot cannot save you from doing all the necessary modifications to
configure the Linux device drivers for use with your target hardware
(no, we don't intend to provide a full virtual machine interface to
Linux :-).
But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot).
Just make sure your machine specific header file (for instance
include/asm-ppc/tqm8xx.h) includes the same definition of the Board
Information structure as we define in include/asm-<arch>/u-boot.h,
and make sure that your definition of IMAP_ADDR uses the same value
as your U-Boot configuration in CONFIG_SYS_IMMR.
Note that U-Boot now has a driver model, a unified model for drivers.
If you are adding a new driver, plumb it into driver model. If there
is no uclass available, you are encouraged to create one. See
doc/driver-model.
Configuring the Linux kernel:
-----------------------------
No specific requirements for U-Boot. Make sure you have some root
device (initial ramdisk, NFS) for your target system.
Building a Linux Image:
-----------------------
With U-Boot, "normal" build targets like "zImage" or "bzImage" are
not used. If you use recent kernel source, a new build target
"uImage" will exist which automatically builds an image usable by
U-Boot. Most older kernels also have support for a "pImage" target,
which was introduced for our predecessor project PPCBoot and uses a
100% compatible format.
Example:
make TQM850L_defconfig
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
make oldconfig
make dep
make uImage
The "uImage" build target uses a special tool (in 'tools/mkimage') to
encapsulate a compressed Linux kernel image with header information,
CRC32 checksum etc. for use with U-Boot. This is what we are doing:
* build a standard "vmlinux" kernel image (in ELF binary format):
* convert the kernel into a raw binary image:
${CROSS_COMPILE}-objcopy -O binary \
-R .note -R .comment \
-S vmlinux linux.bin
* compress the binary image:
gzip -9 linux.bin
* package compressed binary image for U-Boot:
mkimage -A ppc -O linux -T kernel -C gzip \
-a 0 -e 0 -n "Linux Kernel Image" \
-d linux.bin.gz uImage
The "mkimage" tool can also be used to create ramdisk images for use
with U-Boot, either separated from the Linux kernel image, or
combined into one file. "mkimage" encapsulates the images with a 64
byte header containing information about target architecture,
operating system, image type, compression method, entry points, time
stamp, CRC32 checksums, etc.
"mkimage" can be called in two ways: to verify existing images and
print the header information, or to build new images.
In the first form (with "-l" option) mkimage lists the information
contained in the header of an existing U-Boot image; this includes
checksum verification:
tools/mkimage -l image
-l ==> list image header information
The second form (with "-d" option) is used to build a U-Boot image
from a "data file" which is used as image payload:
tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
-n name -d data_file image
-A ==> set architecture to 'arch'
-O ==> set operating system to 'os'
-T ==> set image type to 'type'
-C ==> set compression type 'comp'
-a ==> set load address to 'addr' (hex)
-e ==> set entry point to 'ep' (hex)
-n ==> set image name to 'name'
-d ==> use image data from 'datafile'
Right now, all Linux kernels for PowerPC systems use the same load
address (0x00000000), but the entry point address depends on the
kernel version:
- 2.2.x kernels have the entry point at 0x0000000C,
- 2.3.x and later kernels have the entry point at 0x00000000.
So a typical call to build a U-Boot image would read:
-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
> -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
> examples/uImage.TQM850L
Image Name: 2.4.4 kernel for TQM850L
Created: Wed Jul 19 02:34:59 2000
Image Type: PowerPC Linux Kernel Image (gzip compressed)
Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
Load Address: 0x00000000
Entry Point: 0x00000000
To verify the contents of the image (or check for corruption):
-> tools/mkimage -l examples/uImage.TQM850L
Image Name: 2.4.4 kernel for TQM850L
Created: Wed Jul 19 02:34:59 2000
Image Type: PowerPC Linux Kernel Image (gzip compressed)
Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
Load Address: 0x00000000
Entry Point: 0x00000000
NOTE: for embedded systems where boot time is critical you can trade
speed for memory and install an UNCOMPRESSED image instead: this
needs more space in Flash, but boots much faster since it does not
need to be uncompressed:
-> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz
-> tools/mkimage -n '2.4.4 kernel for TQM850L' \
> -A ppc -O linux -T kernel -C none -a 0 -e 0 \
> -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
> examples/uImage.TQM850L-uncompressed
Image Name: 2.4.4 kernel for TQM850L
Created: Wed Jul 19 02:34:59 2000
Image Type: PowerPC Linux Kernel Image (uncompressed)
Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
Load Address: 0x00000000
Entry Point: 0x00000000
Similar you can build U-Boot images from a 'ramdisk.image.gz' file
when your kernel is intended to use an initial ramdisk:
-> tools/mkimage -n 'Simple Ramdisk Image' \
> -A ppc -O linux -T ramdisk -C gzip \
> -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
Image Name: Simple Ramdisk Image
Created: Wed Jan 12 14:01:50 2000
Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
Load Address: 0x00000000
Entry Point: 0x00000000
The "dumpimage" tool can be used to disassemble or list the contents of images
built by mkimage. See dumpimage's help output (-h) for details.
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
Installing a Linux Image:
-------------------------
To downloading a U-Boot image over the serial (console) interface,
you must convert the image to S-Record format:
objcopy -I binary -O srec examples/image examples/image.srec
The 'objcopy' does not understand the information in the U-Boot
image header, so the resulting S-Record file will be relative to
address 0x00000000. To load it to a given address, you need to
specify the target address as 'offset' parameter with the 'loads'
command.
Example: install the image to address 0x40100000 (which on the
TQM8xxL is in the first Flash bank):
=> erase 40100000 401FFFFF
.......... done
Erased 8 sectors
=> loads 40100000
## Ready for S-Record download ...
~>examples/image.srec
1 2 3 4 5 6 7 8 9 10 11 12 13 ...
...
15989 15990 15991 15992
[file transfer complete]
[connected]
## Start Addr = 0x00000000
You can check the success of the download using the 'iminfo' command;
this includes a checksum verification so you can be sure no data
corruption happened:
=> imi 40100000
## Checking Image at 40100000 ...
Image Name: 2.2.13 for initrd on TQM850L
Image Type: PowerPC Linux Kernel Image (gzip compressed)
Data Size: 335725 Bytes = 327 kB = 0 MB